Answer:
Intensity of beam 18 feet below the surface is about 0.02%
Explanation:
Using Lambert's law
Let dI / dt = kI, where k is a proportionality constant, I is intensity of incident light and t is thickness of the medium
then dI / I = kdt
taking log,
ln(I) = kt + ln C
I = Ce^kt
t=0=>I=I(0)=>C=I(0)
I = I(0)e^kt
t=3 & I=0.25I(0)=>0.25=e^3k
k = ln(0.25)/3
k = -1.386/3
k = -0.4621
I = I(0)e^(-0.4621t)
I(18) = I(0)e^(-0.4621*18)
I(18) = 0.00024413I(0)
Intensity of beam 18 feet below the surface is about 0.2%
Answer:
The weight of Earth's atmosphere exert is 
Explanation:
Given that,
Average pressure 
Radius of earth 
Pressure :
Pressure is equal to the force upon area.
We need to calculate the weight of earth's atmosphere
Using formula of pressure


Where, P = pressure
A = area
Put the value into the formula


Hence, The weight of Earth's atmosphere exert is 
Complete Question
The complete question is shown on the first uploaded image
Answer:
The angle between shuttle's velocity and the Earth's field is 
Explanation:
From the question we are told that
The length of eire let out is 
The emf generated is 
The earth magnetic field is 
The speed of the shuttle and tether is 
The emf generated is mathematically represented as

making
the subject of the formula
![\theta = sin ^{-1}[ \frac{\epsilon}{L * B *v} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%20%20sin%20%5E%7B-1%7D%5B%20%5Cfrac%7B%5Cepsilon%7D%7BL%20%20%2A%20B%20%20%2Av%7D%20%5D)
substituting values
![\theta = sin ^{-1}[ \frac{40}{250 * (5*10^{-5}) *(7.80 *10^{3})} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%20%20sin%20%5E%7B-1%7D%5B%20%5Cfrac%7B40%7D%7B250%20%20%2A%20%285%2A10%5E%7B-5%7D%29%20%20%2A%287.80%20%2A10%5E%7B3%7D%29%7D%20%5D)

Convection can best be observed as she blows the warm steam air that rises.
As the warm steam rises, she forces displaces it with cool air from her mouth. Because the warm steam is less dense it rises and because the cool air is more dense, it displaces the warm air.
This scenario is an example of convection.
We can first calculate the net force using the given information.
By Newton's second law, F(net) = ma:
F(net) = 25 * 4.3 = 107.5
We can now calculate the frictional force, f, which is working against the applied force, F(app) (this is why the net force is a bit lower):
f = F(net) - F(app) = 150 - 107.5 = 42.5 N
Now we can calculate the coefficient of friction, u, using the normal force, F(N):
f = uF(n) --> u = f/F(N)
u = 42.5/[25(9.8)]
u = 0.17