answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scoray [572]
1 year ago
14

The atomic mass of sodium is 0.0230 kg/mole. How many moles are in 1.59 kg of sodium?

Physics
2 answers:
Evgesh-ka [11]1 year ago
6 0

Answer:

0.0144..

Explanation:

0.0230/1.59=0.01444....

galben [10]1 year ago
6 0

\\ \sf\longmapsto No\;of\:moles=\dfrac{Given\:mass}{Atomic\:mass}

\\ \sf\longmapsto No\:of\:moles=\dfrac{1.59}{0.0230}

\\ \sf\longmapsto No\:of\:moles=69.13moles

You might be interested in
The wavelength of green light is 550 nm.
SIZIF [17.4K]

Answer:

(a) momentum of photon is 1.205 x 10⁻²⁷ kgm/s

    velocity of electron is 1323.88 m/s

   momentum of the electron is 1.205 x 10⁻²⁷ kgm/s

(b) momentum of photon is 1.506 x 10⁻²⁷ kgm/s

  velocity of electron is 1654.85 m/s

  momentum of the electron is 1.506 x 10⁻²⁷ kgm/s

(c) The momentum of the photon is equal to the momentum of the electron

Explanation:

(a)

wavelength of green light, λ = 550 nm

momentum of photon is given by;

p = \frac{h}{\lambda}\\\\ p = \frac{6.626 *10^{-34}}{550*10^{-9}}\\\\p = 1.205 *10^{-27} \ kg.m/s

velocity of electron is given by;

P = \frac{h}{\lambda} \\\\mv = \frac{h}{\lambda}\\\\v = \frac{h}{m \lambda}\\\\v =   \frac{6.626 *10^{-34}}{(9.1*10^{-31} )(550*10^{-9})}\\\\v = 1323.88 \ m/s

momentum of the electron is given by;

p = mv

p = (9.1 x 10⁻³¹) (1323.88)

p = 1.205 x 10⁻²⁷ kgm/s

(b)

wavelength of red light, λ = 440 nm

momentum of photon is given by;

p = \frac{h}{\lambda}\\\\ p = \frac{6.626 *10^{-34}}{440*10^{-9}}\\\\p = 1.506 *10^{-27} \ kg.m/s

velocity of electron is given by;

v =   \frac{6.626 *10^{-34}}{(9.1*10^{-31} )(440*10^{-9})}\\\\v = 1654.85 \ m/s

momentum of the electron is given by;

p = mv

p =  (9.1 x 10⁻³¹) (1654.85)

p = 1.506 x 10⁻²⁷ kgm/s

(c) The momentum of the photon is equal to the momentum of the electron.

7 0
2 years ago
If a current of 2.4 a is flowing in a cylindrical wire of diameter 2.0 mm, what is the average current density in this wire?
Gnom [1K]

The average current density in the wire is given by:

J=\frac{I}{A}

where I is the current intensity and A is the cross-sectional area of the wire.


The cross-sectional area of the wire is given by:

A=\pi r^2

where r is the radius of the wire. In this problem, r=\frac{d}{2}=\frac{2.0 mm}{2}=1.0 mm=0.001 m, so the cross-sectional area is

A=\pi (0.001 m)^2=3.14 \cdot 10^{-6} m^2


and the average current density is

J=\frac{I}{A}=\frac{2.4 A}{3.14 \cdot 10^{-6} m^2}=7.64 \cdot 10^5 A/m^2

8 0
2 years ago
Read 2 more answers
The sun transfers energy to the earth by radiation at a rate of approximately 1.00 kW per square meter of surface.
Mashutka [201]

Answer:

1320336992.2512 m²

1320.33 kilometers or 509.79 miles

Explanation:

Energy transferred by the sun

W=0.24\times 1\times 10^3=240\ W/m^2

Energy required by the United States is 1\times 10^{19}\ J/yr (assumed)

Power

P=\frac{E}{t}\\\Rightarrow P=\frac{1\times 10^{19}}{365.25\times 24\times 3600}\\\Rightarrow P=316880878140.2895\ W

Area

A=\frac{P}{W}\\\Rightarrow A=\frac{316880878140.2895}{240}\\\Rightarrow A=132033699.2512\ m^2

Area of the solar collector would be 1320336992.2512 m²

Converting to km²

1\ m^2=\frac{1}{1000\times 1000}\ km^2

1320336992.2512\ m^2=1320336992.2512\times \frac{1}{1000\times 1000}\ km^2=1320.33\ km^2

Converting to mi²

1\ m^2=\frac{1}{1609.34\times 1609.34}\ mi^2

1320336992.2512\ m^2=1320336992.2512\times \frac{1}{1609.34\times 1609.34}\ mi^2=509.79\ mi^2

Each side of the square would be 1320.33 kilometers or 509.79 miles

4 0
2 years ago
Devonte pushes a wheelbarrow with 830 W of power. How much work is required to get the wheelbarrow across the yard in 11 s? Roun
xxMikexx [17]

Answer: 9130 joules

Explanation:

Workdone by wheelbarrow = ?

Time = 11 seconds

Power = 830 watts

Recall that power is the rate of doing work. Thus, power is workdone divided by time taken.

i.e Power = (workdone/time)

830 watts = Workdone / 11 seconds

Workdone = 830 watts x 11 seconds

Workdone = 9130 joules

Thus, 9130 joules of work is required to get the wheelbarrow across the yard.

8 0
2 years ago
Read 2 more answers
What is the initial velocity of the object represented by the graph? ___m/s Graph:
Alex17521 [72]

Answer:

On a velocity-time graph… slope is acceleration. the "y" intercept is the initial velocity. when two curves coincide, the two objects have the same velocity at that time.

4 0
2 years ago
Read 2 more answers
Other questions:
  • A doctor travels to the east from city a to city b 75 km in 1.0h and returns back in another hour
    10·1 answer
  • Margy is trying to improve her cardio endurance by performing an exercise in which she alternates walking and running 100.0 m ea
    8·2 answers
  • A spacecraft drifts through space at a constant velocity. suddenly a gas leak in the side of the spacecraft causes it to constan
    10·1 answer
  • A cyclotron particle accelerator (sometimes called an “atom smasher” in the popular press) is a device for accelerating charged
    9·1 answer
  • What would the speed of each particle be if it had the same wavelength as a photon of yellow light (????=575.0 nm)? Proton (mass
    7·2 answers
  • Two children stand on a platform at the top of a curving slide next to a backyard swimming pool. At the same moment the smaller
    12·1 answer
  • A gold wire that is 1.8 mm in diameter and 15 cm long carries a current of 260 mA. How many electrons per second pass a given cr
    14·1 answer
  • Lizette works in her school’s vegetable garden. Every Tuesday, she pulls weeds for 15 minutes. Weeding seems like a never-ending
    15·2 answers
  • A projectile is launched at an angle of 60° from the horizontal and at a velocity of
    15·1 answer
  • Block A, mass 250 g , sits on top of block B, mass 2.0 kg . The coefficients of static and kinetic friction between blocks A and
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!