Answer:
(C) T
The tension T at equilibrium will be equal to the Buoyant force.
The Buoyant force is given by:
Fb = density x acceleration due to gravity x volume displaced
The change in height doesn't affect the Buoyant force and hence the tension.
Note: The figure of question is added in the attachment
The most widely accepted<span> theory is that the </span>Moon<span> was formed when a Mars-sized object slammed into the Earth, billions of years ago. This collision turned the newly formed Earth into a molten ball of rock again, and ejected material into orbit.</span>
Given : Initial velocity = -1.3 m/s
Final Velocity = -6.5 m/s.
Time = 25 minutes.
To find : Average acceleration.
Solution: We are given units in meter/second (m/s).
So, we need to convert time 25 minutes in seconds.
1 minute = 60 seconds.
25 minutes = 60*25 = 1500 seconds.
Formula for average acceleration is given by,

We are not given intial time, so we can take initial time =0.
Plugging values in the above formula.

= 
= -0.003467
or
.
Setting reference frame so that the x axis is along the incline and y is perpendicular to the incline
<span>X: mgsin65 - F = mAx </span>
<span>Y: N - mgcos65 = 0 (N is the normal force on the incline) N = mgcos65 (which we knew) </span>
<span>Moment about center of mass: </span>
<span>Fr = Iα </span>
<span>Now Ax = rα </span>
<span>and F = umgcos65 </span>
<span>mgsin65 - umgcos65 = mrα -------------> gsin65 - ugcos65 = rα (this is the X equation m's cancel) </span>
<span>umgcos65(r) = 0.4mr^2(α) -----------> ugcos65(r) = 0.4r(rα) (This is the moment equation m's cancel) </span>
<span>ugcos65(r) = 0.4r(gsin65 - ugcos65) ( moment equation subbing in X equation for rα) </span>
<span>ugcos65 = 0.4(gsin65 - ugcos65) </span>
<span>1.4ugcos65 = 0.4gsin65 </span>
<span>1.4ucos65 = 0.4sin65 </span>
<span>u = 0.4sin65/1.4cos65 </span>
<span>u = 0.613 </span>
The frequency of the red light is 428 terahertz. To get the value of the red light's frequency, use the formula F = velocity/wavelength. The velocity of light is 3.00 x 10^8 m/s. For easier computation, convert 700.5 nanometers to meter. 1 nanometer is equal to 1 x 10^-9 meters. 700.5 nanometers is equal to 7.005 x 10^-7 meters. Divide the velocity 3.00 x 10^8m/s by wavelength 7.005 x 10^-7 meters. The result will be 4.28 x 10^14 Hertz or 428 terahertz.