Answer:
Explanation:
One charge is situated at x = 1.95 m . Second charge is situated at y = 1.00 m
These two charges are situated outside sphere as it has radius of .365 m with center at origin. So charge inside sphere = zero.
Applying Gauss's theorem
Flux through spherical surface = charge inside sphere / ε₀
= 0 / ε₀
= 0 Ans .
Answer:
The speed at the end of the track = 27 m/s
The acceleration = 1.2 m/s²
Please find the Δx vs Δt, v vs Δt, a vs Δt
Explanation:
We have;
x = u·t + 1/2·a·t²
Where;
x = The distance = 300 m
u = The initial velocity = 0 m/s (Ball at rest)
t = The time taken = 22.4 s
Therefore;
300 = 0 + 1/2×a×22.4²
a = 2×300/22.4² = 1.19579 ≈ 1.2 m/s²
v = u + a×t
∴ v = 0 + 1.2 × 22.4 = 26.88 ≈ 27 m/s
Part of the table of values is as follows;
t, x, v
0, 0, 0
0.4, 0.095663, 0.478316
0.8, 0.382653, 0.956632
1.2, 0.860969, 1.434948
1.6, 1.530611, 1.913264
2, 2.39158, 2.39158
2.4, 3.443875, 2.869896
2.8, 4.687497, 3.348212
3.2, 6.122445, 3.826528
3.6, 7.748719, 4.304844
Answer:
A) B = 9.425 × 10^(-5) T
B) North direction
Explanation:
A) We are given;
Current in coil; I = 4.5 A
Number of turns; N = 100 turns
Radius;R = diameter/2 = 6/2 = 3 m
Formula for the magnetic field at the center of the coil is given by;
B = (μ_o•N•I)/2R
Where μ_o is a constant = 4π × 10^(-7) H/m
Thus;
B = (4π × 10^(-7) × 100 × 4.5)/(2 × 3)
B = 9.425 × 10^(-5) T
B) The direction of the force on a positive ion in water can be gotten by the application of flemmings right hand rule.
From flemmings right hand rule, we know that;
- The thumb indicates the direction of the motion of the force which is in the north direction.
- The Index finger indicates the direction of the magnetic field which is in the east direction
- The middle finger indicates the direction of magnetic field which is downwards in the west direction.
Therefore, the direction of the force as seen from flemmings right hand rule is in the north direction
Answer:
A
Explanation:
v = change of X / change of T
v = 200/19.3