Answer:
zero or 2π is maximum
Explanation:
Sine waves can be written
x₁ = A sin (kx -wt + φ₁)
x₂ = A sin (kx- wt + φ₂)
When the wave travels in the same direction
Xt = x₁ + x₂
Xt = A [sin (kx-wt + φ₁) + sin (kx-wt + φ₂)]
We are going to develop trigonometric functions, let's call
a = kx + wt
Xt = A [sin (a + φ₁) + sin (a + φ₂)
We develop breasts of double angles
sin (a + φ₁) = sin a cos φ₁ + sin φ₁ cos a
sin (a + φ₂) = sin a cos φ₂ + sin φ₂ cos a
Let's make the sum
sin (a + φ₁) + sin (a + φ₂) = sin a (cos φ₁ + cos φ₂) + cos a (sin φ₁ + sinφ₂)
to have a maximum of the sine function, the cosine of fi must be maximum
cos φ₁ + cos φ₂ = 1 +1 = 2
the possible values of each phase are
φ1 = 0, π, 2π
φ2 = 0, π, 2π,
so that the phase difference of being zero or 2π is maximum
Which amplitude of the following longitudinal waves has the greatest energy?
amplitude = 10 cm; wavelength = 6 cm; period = 4 seconds
Sometimes arithmetic problems can be solved much more easily using the dimensional analysis approach. You focus on the units of the given information. Then, you manipulate them applying the laws of algebra where like units cancel, in order to end up with the unit of the unknown.
Given:
-50 nc/step
31 steps
Unknown: charge
Thus,
Charge = -50 nc/step * 31 steps =<em> -1550 nc</em>
Answer:
Explanation:
i = Imax sin2πft
given i = 180 , Imax = 200 , f = 50 , t = ?
Put the give values in the equation above
180 = 200 sin 2πft
sin 2πft = .9
sin2π x 50t = .9
sin 360 x 50 t = sin ( 360n + 64 )
360 x 50 t = 360n + 64
360 x 50 t = 64 , ( putting n = 0 for least value of t )
18000 t = 64
t = 3.55 ms .
There are other forces at work here nevertheless we will imagine
it is just a conservation of momentum exercise. Also the given mass of the
astronaut is light astronaut.
The solution for this problem is using the formula: m1V1=m2V2 but
we need to get V1:
V1= (m2/m1) V2
V1= (10/63) 12 = 1.9 m/s will be the final speed of the astronaut after
throwing the tank.