Answer:
tentatively group it with birds and speculate that the trait shared only with bats is a derived rather than an ancestral trait with bats.
Explanation:
The scientist after his observation should tentatively classify this organism with birds and the the second end of calculating the other morphological traits which makes it possess the likely bat traits to be ancestral.
According to scientists, most widely used modern systematic practice
depends upon the assumption that a change from character in one species
to character occurs once and once only in the evolutionary process and that this process is irreversible so that it never returns.
In this scheme, there are no independently derived parallel evolutionary changes,
nor convergences from a variety of states to a single one. Therefore, when two organisms share a
character state different from other species, it is because they are more closely related to each other through a recent common ancestor than they are to other species.
Also using the parsimony principle, a scheme of common ancestry for all the species is derived that uses all the characters that have been observed.
The fossils from
Australopithecus provide evidence for evolution because some parts of the bone
that contains the DNA of it can be identified as this type of animal. They can
be detected through the use of carbon dating devices.
100% shore its B hope that helps you good luck
Answer:
Methemoglobinemia
Explanation:
Methemoglobinemia (also known as the blue baby syndrome), is a condition with multiple etiologies which is associated with the lack of oxygen in the blood. This syndrome affects the function of red blood cells by altering the amount of hemoglobin protein, which carries and distributes oxygen to the body. Methemoglobinemia may be acquired by exposure to drugs and/or toxins. In this regard, it has been shown that high levels of nitrates in the water may induce this syndrome in infants.