We can used the Simpson's Rule says to approximate the area under a given curve using the following formula:
<span>(Δx/3)[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + ... + 2f(xn-2) + 4f(xn-1) + f(xn)] </span>
<span>The pool is divided into 8 subintervals. We integrate the given function from 0 to 24, while the graph provides values of f(x) at 7 different points. The first value given, 6.2, is NOT f(0). It is f(3). Using Simpson's Rule, and dividing the lake of 24 meters into 8 subintervals, we write the equation: </span>
<span>area = (3/3)[f(0) + 4f(3) + 2f(6) + 4f(9) +2f(12) + 4f(15) + 2f(18) + 4f(21) + f(24)] </span>
<span>Pool area = 0 + 4(6.2) + 2(7.2) +4(6.8) + 2(5.6) + 4(5.0) +2(4.8) +4(4.8) + 0 = 126.4 m^2 </span>
<span>Rounding to the nearest square meter, the area of the lake is approximately 126 m^2 </span>
Answer: Expected value of the daily cost of operating the machine is 235.264.
Step-by-step explanation:
Since we have given that
E[x]= 0.96 repairs per day
And Var[x] = 0.96 repairs per day.

![E[c]=160+40E[x^2]\\\\E[c]=160+40(Var[x]+(E[x])^2)\\\\E[c]=160+40(0.96+0.96^2)\\\\E[c]=235.264](https://tex.z-dn.net/?f=E%5Bc%5D%3D160%2B40E%5Bx%5E2%5D%5C%5C%5C%5CE%5Bc%5D%3D160%2B40%28Var%5Bx%5D%2B%28E%5Bx%5D%29%5E2%29%5C%5C%5C%5CE%5Bc%5D%3D160%2B40%280.96%2B0.96%5E2%29%5C%5C%5C%5CE%5Bc%5D%3D235.264)
Hence, Expected value of the daily cost of operating the machine is 235.264.
Answer:
Rob owes his father=-$15-$3= -$18
Step-by-step explanation:
Rob borrows $15 first and then $3.
Since we have to use negative integers, so
-$15-$3= -$18
Use the pythagorean therom. 12 squared + 3 squared = x squared
So the answer is 12.4 feet
Find each probability separately and then multiply the two together
Probability for even number is 3/6 or 1/2 because their are 3 even numbers out of 6 numbers
Probability to get a black chip is 1 black chip out of 3 totals so 1/3
Multiply 1/3 by 1/2
Answer 1/6