C is your answer e cause u supposed to multiple
Answer:
The average weight of new born otter was, 
Step-by-step explanation:
Let average weight of new born otter be x.
As per the given statement: At birth it's weight was 7/8 kilograms which is 9/10 kilogram less than the average weight of a new born otter in the aquarium
"
kg less than average weight of a new born otter" means 
As per the given information, we have;

Add
both sides, we have;

Take LCM of 8 and 10 is, 40
⇒
Simplify:

Therefore, the average weight of new born otter was, 
Answer:
We need a sample size of at least 719
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so 
Now, find the margin of error M as such

In which
is the standard deviation of the population and n is the size of the sample.
How large a sample size is required to vary population mean within 0.30 seat of the sample mean with 95% confidence interval?
This is at least n, in which n is found when
. So






Rouding up
We need a sample size of at least 719
Answer: ![3ab\sqrt[3]{b^4}](https://tex.z-dn.net/?f=3ab%5Csqrt%5B3%5D%7Bb%5E4%7D)
Step-by-step explanation:
Given the following expression:
![\sqrt[3]{27a^3b^7}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B27a%5E3b%5E7%7D)
You need to apply the Product of powers property, which states that:

Then, you can rewrite the expression as following:
![=\sqrt[3]{27a^3b^4b^3}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B3%5D%7B27a%5E3b%5E4b%5E3%7D)
The next step is to descompose 27 into its prime factors:

Now you must substitute
inside the given root. Then:
![=\sqrt[3]{3^3a^3b^4b^3}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B3%5D%7B3%5E3a%5E3b%5E4b%5E3%7D)
You need to remember that, according to Radicals properties:
![\sqrt[n]{a^n}=a^{\frac{n}{n}}=a^1=a](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%5En%7D%3Da%5E%7B%5Cfrac%7Bn%7D%7Bn%7D%7D%3Da%5E1%3Da)
Therefore, the final step is to apply this property in order to finally get the expression is its simplest form. This is:
![=3^{\frac{3}{3}}a^{\frac{3}{3}}b^{\frac{4}{3}}b^{\frac{3}{3}}=3ab^{\frac{4}{3}}b=3ab\sqrt[3]{b^4}](https://tex.z-dn.net/?f=%3D3%5E%7B%5Cfrac%7B3%7D%7B3%7D%7Da%5E%7B%5Cfrac%7B3%7D%7B3%7D%7Db%5E%7B%5Cfrac%7B4%7D%7B3%7D%7Db%5E%7B%5Cfrac%7B3%7D%7B3%7D%7D%3D3ab%5E%7B%5Cfrac%7B4%7D%7B3%7D%7Db%3D3ab%5Csqrt%5B3%5D%7Bb%5E4%7D)