Answer:
- <em>Between which two tens does it fall?</em><em> </em><u>Between 25 and 26 tens</u>
<em><u /></em>
- <em>Between which two hundreds does it fall?</em> <u>Between 2 and 3 hundreds</u>
Explanation:
The place-value chart is:
Hundreds Tens Ones
2 5 3
<em><u /></em>
<em><u>a) Between which two tens does it fall? </u></em>
Using the place values you can write 253 = 25 × 10 + 3, i.e. 25 tens and 3 ones.
From that you can write:
Then, you conclude that 253 is between 25 and 26 tens.
<u><em>b) Between which two hundreds does it fall?</em></u>
Using the same reasoning:
- 253 = 2 × 100 + 5 × 10 + 3 = 253
Conclusion: 253 is between 2 hundreds and 3 hundreds.
The answer is -16 - 10i.
Using the distributive property on the first part, we have:
-2i*7--2i*4i + (3+i)(-2+2i)
-14i+8i² +(3+i)(-2+2i)
Using FOIL on the last part,
-14i+8i²+(3*-2+3*2i+i*-2+i*2i)
-14i+8i²-6+6i-2i+2i²
-10i+8i²-6+2i²
Since we know that i = -1,
-10i+8(-1)-6+2(-1)
-10i-8-6-2
-16-10i
Answer:
1. b ∈ B 2. ∀ a ∈ N; 2a ∈ Z 3. N ⊂ Z ⊂ Q ⊂ R 4. J ≤ J⁻¹ : J ∈ Z⁻
Step-by-step explanation:
1. Let b be the number and B be the set, so mathematically, it is written as
b ∈ B.
2. Let a be an element of natural number N and 2a be an even number. Since 2a is in the set of integers Z, we write
∀ a ∈ N; 2a ∈ Z
3. Let N represent the set of natural numbers, Z represent the set of integers, Q represent the set of rational numbers, and R represent the set of rational numbers.
Since each set is a subset of the latter set, we write
N ⊂ Z ⊂ Q ⊂ R .
4. Let J be the negative integer which is an element if negative integers. Let the set of negative integers be represented by Z⁻. Since J is less than or equal to its inverse, we write
J ≤ J⁻¹ : J ∈ Z⁻
Answer:
<h2>
The mean decreases, and the median remains the same.</h2>
Step-by-step explanation:
Remember that a box plot is made by the quartiles of the distribution, the maximum value and the minimum value. So, from a box plot we can deduct the range, the median and the interquartile range.
In this case, the median remains the same at $9.5 per hour. The median is indicated by the middle line of the box, and you can observe that it doesn't change.
Now, the range of the data set decreases from 7 to 3.
On the other hand, the mean must decrease, because data greater than $11 doesn't exist in the box plot number 2, and the mean is a central measure sensible to those changes.
Therefore, the right answer is <em>The mean decreases, and the median remains the same.</em>