Answer:
![\left[\begin{array}{cc}3&9\\5&-2\end{array}\right] +\left[\begin{array}{cc}6&0\\-8&4\end{array}\right]=\left[\begin{array}{cc}9&9\\-3&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%269%5C%5C5%26-2%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%260%5C%5C-8%264%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D9%269%5C%5C-3%262%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
To add matrices, we add the corresponding components.
The given matrices is
![\left[\begin{array}{cc}3&9\\5&-2\end{array}\right] +\left[\begin{array}{cc}6&0\\-8&4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%269%5C%5C5%26-2%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%260%5C%5C-8%264%5Cend%7Barray%7D%5Cright%5D)
We add the corresponding components to get;
![\left[\begin{array}{cc}3&9\\5&-2\end{array}\right] +\left[\begin{array}{cc}6&0\\-8&4\end{array}\right]=\left[\begin{array}{cc}3+6&9+0\\5+-8&-2+4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%269%5C%5C5%26-2%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%260%5C%5C-8%264%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%2B6%269%2B0%5C%5C5%2B-8%26-2%2B4%5Cend%7Barray%7D%5Cright%5D)
We simplify to get:
![\left[\begin{array}{cc}3&9\\5&-2\end{array}\right] +\left[\begin{array}{cc}6&0\\-8&4\end{array}\right]=\left[\begin{array}{cc}9&9\\-3&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%269%5C%5C5%26-2%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%260%5C%5C-8%264%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D9%269%5C%5C-3%262%5Cend%7Barray%7D%5Cright%5D)
Sqrt(0.4), -sqrt(0.4)
Decimals: .6324 , -.6324
The function is

1. let's factorize the expression

:

the zeros of f(x) are the values of x which make f(x) = 0.
from the factorized form of the function, we see that the roots are:
-3, multiplicity 1
3, multiplicity 1
0, multiplicity 3
(the multiplicity of the roots is the power of each factor of f(x) )
2.
The end behavior of f(x), whose term of largest degree is

, is the same as the end behavior of

, which has a well known graph. Check the picture attached.
(similarly the end behavior of an even degree polynomial, could be compared to the end behavior of

)
so, like the graph of

, the graph of

:
"As x goes to negative infinity, f(x) goes to negative infinity, and as x goes to positive infinity, f(x) goes to positive infinity. "
Answer:
I'm pretty sure the answer is D. You can see that 6 washes is 30 dollars so that would make each wash $5 and all other answers can be proven wrong or not proven to be true.
By definition we have that the average rate of change of the function is:

Evaluating the function for the complete interval we have that the AVR is given by:

Rewriting we have:

Simplifying the expression we have:


Answer:
the average rate of change of the function defined by the table is:
