Answer:
The standard deviation is 10.38
Step-by-step explanation:
Given;
Variance, v = 107.76
mean, x = 34.2
The standard deviation is given by;
standard deviation = √variance
standard deviation = √107.76
standard deviation = 10.381
standard deviation = 10.38 (two decimal places)
Therefore, the standard deviation is 10.38
Answer:
The answer is 3
Step-by-step explanation:
B/c 8+2=10 just add one more and 2+1=3
First, lets create a equation for our situation. Let

be the months. We know four our problem that <span>Eliza started her savings account with $100, and each month she deposits $25 into her account. We can use that information to create a model as follows:
</span>

<span>
We want to find the average value of that function </span>from the 2nd month to the 10th month, so its average value in the interval [2,10]. Remember that the formula for finding the average of a function over an interval is:

. So lets replace the values in our formula to find the average of our function:
![\frac{25(10)+100-[25(2)+100]}{10-2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B25%2810%29%2B100-%5B25%282%29%2B100%5D%7D%7B10-2%7D%20)



We can conclude that <span>the average rate of change in Eliza's account from the 2nd month to the 10th month is $25.</span>
Answer:
His 95% confidence interval is (0.065, 0.155).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
For this problem, we have that:

95% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
The lower limit of this interval is:

The upper limit of this interval is:

His 95% confidence interval is (0.065, 0.155).
Answer:
a) 
b) Wind capacity will pass 600 gigawatts during the year 2018
Step-by-step explanation:
The world wind energy generating capacity can be modeled by the following function

In which W(t) is the wind energy generating capacity in t years after 2014, W(0) is the capacity in 2014 and r is the growth rate, as a decimal.
371 gigawatts by the end of 2014 and has been increasing at a continuous rate of approximately 16.8%.
This means that

(a) Give a formula for W , in gigawatts, as a function of time, t , in years since the end of 2014 . W= gigawatts



(b) When is wind capacity predicted to pass 600 gigawatts? Wind capacity will pass 600 gigawatts during the year?
This is t years after the end of 2014, in which t found when W(t) = 600. So




We have that:

So we apply log to both sides of the equality





It will happen 3.1 years after the end of 2014, so during the year of 2018.