Answer:
We want a polynomial of smallest degree with rational coefficients with zeros in
,
and -3. The last root gives us the factor (x+3). Hence, our polynomial is

where
is a polynomial with rational coefficients and roots
and
. The root
gives us a factor
, but in order to obtain rational coefficients we must consider the factor
.
An analogue idea works with
. For convenience write
. This gives the factor
. Hence,

Notice that
. So, in order to satisfy the last condition we divide by 3 the whole polynomial, without altering its roots. Finally, the wanted polynomial is

Step-by-step explanation:
We must have present that any polynomial it's determined by its roots up to a constant factor. But here we have irrational ones, in order to eliminate the irrational coefficients that a factor of the type
will introduce in the expression, we need to multiply by its conjugate
. Hence, we will obtain
that have rational coefficients. Finally, the last condition is given with the intention to fix the constant factor. Usually it is enough to evaluate in the point and obtain the necessary factor.
Answer:
1. Ali makes three straight long cuts along the diameter of the pizza.
2. Ali makes two straight long cuts along the diameter of the pizza.
Step-by-step explanation:
Check the picture below.
is not very specific above, but sounds like it's asking for an equation for the trapezoid only, mind you, there are square tiles too.
but let's do the trapezoid area then,
![\bf a^{\frac{{ n}}{{ m}}} \implies \sqrt[{ m}]{a^{ n}} \qquad \qquad \sqrt[{ m}]{a^{ n}}\implies a^{\frac{{ n}}{{ m}}}\\\\ -------------------------------\\\\](https://tex.z-dn.net/?f=%5Cbf%20a%5E%7B%5Cfrac%7B%7B%20n%7D%7D%7B%7B%20m%7D%7D%7D%20%5Cimplies%20%20%5Csqrt%5B%7B%20m%7D%5D%7Ba%5E%7B%20n%7D%7D%20%5Cqquad%20%5Cqquad%0A%5Csqrt%5B%7B%20m%7D%5D%7Ba%5E%7B%20n%7D%7D%5Cimplies%20a%5E%7B%5Cfrac%7B%7B%20n%7D%7D%7B%7B%20m%7D%7D%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C)
So in order to find the correct answer, we can just easily plug in the values to check which ordered pair matches the given inequality above. So based on my solutions, the correct answer would be the last pair.
<span> y − 2x ≤ 1
0 - 2(5)</span> ≤ 1
0-10 ≤ 1
-10 ≤ 1
Hope this answer helps.