Is there an attachment to this? It cant be answered without a picture or a description.
Answer:
Step-by-step explanation:
Given the equation
Sin(5x) = ½
5x = arcSin(½)
5x = 30°
Then,
The general formula for sin is
5θ = n180 + (-1)ⁿθ
Divide through by 5
θ = n•36 + (-1)ⁿ30/5
θ = 36n + (-1)ⁿ6
The range of the solution is
0<θ<2π I.e 0<θ<360
First solution
When n = 0
θ = 36n + (-1)ⁿθ
θ = 0×36 + (-1)^0×6
θ = 6°
When n = 1
θ = 36n + (-1)ⁿ6
θ = 36-6
θ = 30°
When n = 2
θ = 36n + (-1)ⁿ6
θ = 36×2 + 6
θ = 78°
When n =3
θ = 36n + (-1)ⁿ6
θ = 36×3 - 6
θ = 102°
When n=4
θ = 36n + (-1)ⁿ6
θ = 36×4 + 6
θ = 150
When n =5
θ = 36n + (-1)ⁿ6
θ = 36×5 - 6
θ = 174°
When n = 6
θ = 36n+ (-1)ⁿ6
θ = 36×6 + 6
θ = 222°
When n = 7
θ = 36n + (-1)ⁿ6
θ = 36×7 - 6
θ = 246°
When n =8
θ = 36n + (-1)ⁿ6
θ = 36×8 + 6
θ = 294°
When n =9
θ = 36n + (-1)ⁿ6
θ = 36×9 - 6
θ = 318°
When n =10
θ = 36n + (-1)ⁿ6
θ = 36×10 + 6
θ = 366°
When n = 10 is out of range of θ
Then, the solution is from n =0 to n=9
So the equation have 10 solutions in the range 0<θ<2π
Answer:
Conclusion
There is no sufficient evidence to conclude that the mean of the home prices from Ascension parish is higher than the EBR mean
Step-by-step explanation:
From the question we are told that
The population mean for EBR is 
The sample mean for Ascension parish is 
The p-value is 
The level of significance is 
The null hypothesis is 
The alternative hypothesis is 
Here
is the population mean for Ascension parish
From the data given values we see that

So we fail to reject the null hypothesis
So we conclude that there is no sufficient evidence to conclude that the mean of the home prices from Ascension parish is higher than the EBR mean
Answer: 56/81
Step-by-step explanation:
in the attachment