Answer: c
=
3
f
y
−
12
m
y
Step-by-step explanation:
Isolate the variable by dividing each side by factors that don't contain the variable.
Answer:
B) A one-sample t-test for population mean would be used.
Step-by-step explanation:
The complete question is shown in the image below.
The marketing executive is interested in comparing the mean number of sales of this year to that of previous year.
The marketing executive already has the value of mean from previous year and uses a sample to calculate the mean and standard deviation of sales for the current year.
Since, data is being collected for one sample only this limits us to chose between one sample test for mean. So now the possible options are one sample t-test for population mean and one sample t-test for population mean.
If we read the statement we can see that we have the value of sample mean and sample standard deviation. Value of population standard deviation is unknown. In cases where value of population standard deviation is not known and sample standard deviation is given, t-test is used.
Therefore, we can conclude that A one-sample t-test for population mean would be used.
Answer:
2^27
Step-by-step explanation:
Given the following expression:
[(2^10)^3 x (2^-10)] ÷ 2^-7
This can be easily simplified. Let us simplify the numerator first. To do that, we have
(2^10)^3 making use of the power rule of indices that says:
(A^a)^b = A^ab where a and b are powers, we have:
2^(10x3) = 2^30
Therefore the numerator becomes:
2^30 x 2^-10. Also making use of the multiplication rule that says:
A^a x A^b = A^(a + b), we have
2^30 x 2^-10 = 2^(30 – 10) = 2^20.
Now we have:
(2^20) ÷ (2^-7)
To simplify this, we need the division rule of indices which says:
A^a ÷ A^b = A^(a – b)
Therefore we have:
(2^20) ÷ (2^-7) = 2^[20 – (–7)] = 2^(20+7) = 2^27
Answer:
Plane A and QRV intersection line is QR.
Explanation:
The plane QRV contains the rectangle QRVN. This rectangle intersects the plane A in the line QR.
Plane A and QRV intersection line is QR.
If one knows a specific line in one plane (for example, two points in the plane), and this line intersects the other plane, then its point of intersection.
Thus, it is on the line of intersection for the two planes.
The answer is C.................................................