Circumcenter and circumcirle are shown in the attachment. Assume that the triangle is DEF instead of ABC and that the intersection of perpendiculars is H.
The definition of the circumcenter of a triangle is defined as the point of intersection of all the perpendicular bisectors in the triangle.
The circumcircle passes by all three of the triangle's vertices.
Based on the above, the right choiceS will be:
Point H is the center of the circle that passes through points D, E, and F.
HD = HE
Answer:
4
Step-by-step explanation:
Well first we need to plug in 10 for g and h for 5.
4 - .25(10) + .5(5)
4 - 2.5. + 2.5
1.5 + 2.5
= 4
<em>Thus,</em>
<em>the answer is 4</em>
<em />
<em>Hope this helps :)</em>
Answer:
x=nπ3, n∈I
Step-by-step explanation:
sin x + sin 5x = sin 2x + sin 4x
⇒⇒ 2 sin 3x cos 2x = 2 sin 3x cos x
⇒⇒ 2 sin 3x(cos 2x - cos x) = 0
⇒ sin 3x=0 ⇒ 3x=nπ ⇒ x=nπ3⇒ sin 3x=0 ⇒ 3x=nπ ⇒ x=nπ3 , n∈I, n∈I
or cos 2x−cos x=0 ⇒ cos 2x=cos xcos 2x-cos x=0 ⇒ cos 2x=cos x
⇒ 2x=2nπ±x ⇒ x=2nπ, 2nπ3⇒ 2x=2nπ±x ⇒ x=2nπ, 2nπ3 , n∈I, n∈I
But solutions obtained by x=2nπx=2nπ , n∈I, n∈I or x=2nπ3x=2nπ3 , n∈I, n∈I are all involved in x=nπ3x=nπ3 , n∈I
X+y=425. This is as simple it can be, unless theres more information. x is the distance traveled on the first day and y is the distance traveled on the second day.
Answer:
The Laplace transform of f(t) = 1 is given by
F(s) = (1/s) for all s>0
Step-by-step explanation:
Laplace transform of a function f(t) is given as
F(s) = ∫∞₀ f(t) e⁻ˢᵗ dt
Find the Laplace transform for when f(t) = 1
F(s) = ∫∞₀ 1.e⁻ˢᵗ dt
F(s) = ∫∞₀ e⁻ˢᵗ dt = (1/s) [-e⁻ˢᵗ]∞₀
= -(1/s) [1/eˢᵗ]∞₀
Note that e^(∞) = ∞
F(s) = -(1/s) [(1/∞) - (1/e⁰)]
Note that (1/∞) = 0
F(s) = -(1/s) [0 - 1] = -(1/s) (-1) = (1/s)
Hope this Helps!!!