Answer:
![\frac{\sqrt[3]{16y^4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B16y%5E4%7D%7D%7Bx%5E2%7D)
Step-by-step explanation:
The options are missing; However, I'll simplify the given expression.
Given
![\frac{\sqrt[3]{32x^3y^6}}{\sqrt[3]{2x^9y^2} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B32x%5E3y%5E6%7D%7D%7B%5Csqrt%5B3%5D%7B2x%5E9y%5E2%7D%20%7D)
Required
Write Equivalent Expression
To solve this expression, we'll make use of laws of indices throughout.
From laws of indices ![\sqrt[n]{a} = a^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%7D%20%20%3D%20a%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)
So,
gives

Also from laws of indices

So, the above expression can be further simplified to

Multiply the exponents gives

Substitute
for 32


From laws of indices

This law can be applied to the expression above;
becomes

Solve exponents


From laws of indices,
; So,
gives

The expression at the numerator can be combined to give

Lastly, From laws of indices,
; So,
becomes
![\frac{\sqrt[3]{(2y)}^{4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B%282y%29%7D%5E%7B4%7D%7D%7Bx%5E2%7D)
![\frac{\sqrt[3]{16y^4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B16y%5E4%7D%7D%7Bx%5E2%7D)
Hence,
is equivalent to ![\frac{\sqrt[3]{16y^4}}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B16y%5E4%7D%7D%7Bx%5E2%7D)
Answer:
A
Step-by-step explanation:
15*18=270.
270-46.50=223.5
223.5-129.95=93.55.
A. $93.55
Answer:
The standard form of a circle is (x-h)^2 + (y-k)^2 = r^2 with (h,k) being the center of the circle and r being the radius. In this case the circle's equation in standard form is (x-2)^2 + (y+3)^2 = 18. Knowing this it's easy to see that the center of the circle (h,k) is (2,-3). Finally the radius is
or in simplified terms, 3
Step-by-step explanation:
Answer: 
Step-by-step explanation:
You know that:
- 2/5 of the spice mixture was oregano.
- 1/3 of the spice mixture was basil.
Then, to find the fraction of the total amount of spice mixture that was oregano and basil, you must add both fractions, as following:
- Find the least common multiply of the denominators:

- Divide the LCM by each original denominator and multiply the result by each numerator.
- Make the addition.
Then, the result is:
