3.60
bc using a part to whole chart you cross multiply 24*15 get 360 then divide it by 100 and get 3.60
There are 81 band members. :-)
4 rows of 20 = 80 ... with one left over = 80 + 1 (81)
6 rows of 13 = 78 ... with three left over = 78 + 3 (81)
7 rows of 11 = 77 ... with four left over = 77 + 4 (81)
At the time of her grandson's birth, a grandmother deposits $12,000.00 in an account that pays 2% compound monthly. What will be that value of the account at the child's twenty-first birthday, assuming that no other deposits or withdrawls are made during the period.
---
A(t) = P(1+(r/n))^(nt)
---
A(21) = 12000(1+(0.02/12))^(12*21)
---
A(21) = 12000(1.5214)
---
A(21) = #18,257.15
Answer:
- Benito's error was using the equal sign (=) instead of the congruency symbol (≅).
Explanation:
Benito's error was using the equal sign (=) instead of the congruency symbol (≅).
The congruency symbol (≅) means that the elements (segments, angles or figures in general) have the same measure, i.e. they have equal lengths for the segments or equal measure for the angles.
For instance, it is an error saying that the segment AB is equal to the segment BC because, as you clearly see in the picture, they are not same; they have the same length but they are joining different points, that makes them different in essence, although they have the same length. They would be equal only if they are the same figure.
In mathematics, you must not say that two different segments or two different angles are equal but they are congruent, which means that their lengths are equal. The use of equal is reserved for numbers and variables, not for figures like segment, points, angles, polygons.
Answer:
We can claim with 95% confidence that the proportion of executives that prefer trucks is between 19.2% and 32.8%.
Step-by-step explanation:
We have a sample of executives, of size n=160, and the proportion that prefer trucks is 26%.
We have to calculate a 95% confidence interval for the proportion.
The sample proportion is p=0.26.
The standard error of the proportion is:
The critical z-value for a 95% confidence interval is z=1.96.
The margin of error (MOE) can be calculated as:

Then, the lower and upper bounds of the confidence interval are:

The 95% confidence interval for the population proportion is (0.192, 0.328).
We can claim with 95% confidence that the proportion of executives that prefer trucks is between 19.2% and 32.8%.