answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mariana [72]
2 years ago
5

Jane addresses twice as many envelopes as Lewis in the same amount of time together they are just 390 envelopes each day

Mathematics
2 answers:
Volgvan2 years ago
7 0
Lewis =130
Jane= 260

2L+L=390
3L=390
L=130


sergiy2304 [10]2 years ago
5 0
Jane - 260, Lewis - 130.
You might be interested in
What situation could this diagram represent?
Aleonysh [2.5K]

Answer: B- Flipping two coins once


Step-by-step explanation:


8 0
2 years ago
Read 2 more answers
Se the divergence theorem to calculate the surface integral s f · ds; that is, calculate the flux of f across s. f(x, y, z) = x2
pishuonlain [190]
\mathbf f(x,y,z)=x^2\sin y\,\mathbf i+x\cos y\,\mathbf j-xz \sin y\,\mathbf k
\implies\nabla\cdot\mathbf f(x,y,z)=2x\sin y-x\sin y-x\sin y=0

which means

\displaystyle\iint_S\mathbf f(x,y,z)\,\mathrm dS=\iiint_R\nabla\cdot\mathbf f(x,y,z)\,\mathrm dV=0
8 0
2 years ago
The graphs of the quadratic functions f(x) = 6 – 10x2 and g(x) = 8 – (x – 2)2 are provided below. Observe there are TWO lines si
natta225 [31]

Answer:

a) y = 7.74*x + 7.5

b)  y = 1.148*x + 6.036

Step-by-step explanation:

Given:

                                  f(x) = 6 - 10*x^2

                                  g(x) = 8 - (x-2)^2

Find:

(a) The line simultaneously tangent to both graphs having the LARGEST slope has equation

(b) The other line simultaneously tangent to both graphs has equation,

Solution:

- Find the derivatives of the two functions given:

                                f'(x) = -20*x

                                g'(x) = -2*(x-2)

- Since, the derivative of both function depends on the x coordinate. We will choose a point x_o which is common for both the functions f(x) and g(x). Point: ( x_o , g(x_o)) Hence,

                                g'(x_o) = -2*(x_o -2)

- Now compute the gradient of a line tangent to both graphs at point (x_o , g(x_o) ) on g(x) graph and point ( x , f(x) ) on function f(x):

                                m = (g(x_o) - f(x)) / (x_o - x)

                                m = (8 - (x_o-2)^2 - 6 + 10*x^2) / (x_o - x)

                                m = (8 - (x_o^2 - 4*x_o + 4) - 6 + 10*x^2)/(x_o - x)

                                m = ( 8 - x_o^2 + 4*x_o -4 -6 +10*x^2) /(x_o - x)

                                m = ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x)

- Now the gradient of the line computed from a point on each graph m must be equal to the derivatives computed earlier for each function:

                                m = f'(x) = g'(x_o)

- We will develop the first expression:

                                m = f'(x)

                                ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

Eq 1.                          (-2 - x_o^2 + 4*x_o + 10*x^2) = -20*x*x_o + 20*x^2

And,

                              m = g'(x_o)

                              ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

                              -2 - x_o^2 + 4*x_o + 10*x^2 = -2(x_o - 2)(x_o - x)

Eq 2                       -2 - x_o^2 + 4*x_o+ 10*x^2 = -2(x_o^2 - x_o*(x + 2) + 2*x)

- Now subtract the two equations (Eq 1 - Eq 2):

                              -20*x*x_o + 20*x^2 + 2*x_o^2 - 2*x_o*(x + 2) + 4*x = 0

                              -22*x*x_o + 20*x^2 + 2*x_o^2 - 4*x_o + 4*x = 0

- Form factors:       20*x^2 - 20*x*x_o - 2*x*x_o + 2*x_o^2 - 4*x_o + 4*x = 0

                              20*x*(x - x_o) - 2*x_o*(x - x_o) + 4*(x - x_o) = 0

                               (x - x_o)(20*x - 2*x_o + 4) = 0  

                               x = x_o   ,     x_o = 10x + 2    

- For x_o = 10x + 2  ,

                               (g(10*x + 2) - f(x))/(10*x + 2 - x) = -20*x

                                (8 - 100*x^2 - 6 + 10*x^2)/(9*x + 2) = -20*x

                                (-90*x^2 + 2) = -180*x^2 - 40*x

                                90*x^2 + 40*x + 2 = 0  

- Solve the quadratic equation above:

                                 x = -0.0574, -0.387      

- Largest slope is at x = -0.387 where equation of line is:

                                  y - 4.502 = -20*(-0.387)*(x + 0.387)

                                  y = 7.74*x + 7.5          

- Other tangent line:

                                  y - 5.97 = 1.148*(x + 0.0574)

                                  y = 1.148*x + 6.036

6 0
2 years ago
Mr. Johnson is going to buy an 18 3 4 pound turkey for Thanksgiving. The turkey costs $ 2.80 per pound at the grocery store. If
bezimeni [28]

Answer:

10.22 she save

Step-by-step explanation:

18 3/4 x 2.80=51.1

51.1 x 20%=10.22

4 0
2 years ago
In equilateral ∆ABC with side a, the perpendicular to side AB at point B intersects extension of median AM in point P. What is t
Sergeeva-Olga [200]

Answer:

Perimeter  = (2 + √3)·a

Step-by-step explanation:

Given: ΔABC is equilateral and AB = a

The diagram is given below :

AM is a median , PB ⊥ AB , PM = b

Now, by using properties of equilateral triangle, median is perpendicular bisector and each angle is of 60°.

We get, ∠AMB = 90°. So, by linear pair ∠AMB + ∠PMB = 180° ⇒ ∠PMB = 90°. Also, ∠ABC = 60° and ∠ABP = 90° (given) So, ∠PBM = 30°

Since, AM is perpendicular bisector of BC. So,

MB = \frac{a}{2}

Now in ΔAMB , By using Pythagoras theorem

AB^{2}=AM^{2}+MB^{2}\\AM^{2}=AB^{2}-MB^{2}\\AM^{2}=a^{2}-(\frac{a}{2})^{2}\\AM=\frac{\sqrt{3}\cdot a}{2}

Now, in ΔBMP :

sin\thinspace 30^{o}=\frac{\text{Perpendicular}}{\text{Hypotenuse}}\\\\sin\thinspace 30^{o}=\frac{\text{MB}}{\text{PB}}\\\\PB=\frac{\text{MB}}{\text{sin 30}}\\\\PB=\frac{\frac{a}{2}}{\frac{1}{2}}\implies PB = a\\\\tan\thinspace 30^{o}=\frac{\text{Perpendicular}}{\text{Base}}\\\\tan\thinspace 30^{o}=\frac{\text{MB}}{\text{PM}}\\\\PM=\frac{\text{MB}}{\text{tan 30}}\\\\PM=\frac{\frac{a}{2}}{\frac{1}{\sqrt3}}\implies PM=b= \frac{\sqrt{3}\cdot a}{2}

Perimeter of ABM = AB + PB + PM + AM

\text{Perimeter = }a+a+b+ \frac{\sqrt{3}\cdot a}{2}\\\\=2\cdot a + \frac{\sqrt{3}\cdot a}{2} +\frac{\sqrt{3}\cdot a}{2}\\\\=2\cdot a +\sqrt{3}\cdot a\\\\=(2+\sqrt3})\cdot a

Hence, Perimeter of ΔABP = (2 + √3)·a units

3 0
2 years ago
Other questions:
  • Juanita and Samuel are planning a pizza party. They order a rectangle sheet pizza that measures 21 inches by 36 inches.?They tel
    11·1 answer
  • Evaluate the function rule for a given value <br> y=12•3x for x=-2
    14·1 answer
  • The approximate line of best fit is given by the equation y=40x-1800. Based on this trend which of the following best predicts t
    14·1 answer
  • Calculating Profit Using this table, calculate the profit at each level of bicycle production. One bike: -$ Two bikes: $ Three b
    9·1 answer
  • Suppose that a new company has five employees: Zamora, Agraharam, Smith, Chou, and Macintyre. Each employee will assume one of s
    14·2 answers
  • Solve for x in the equation x squared minus 12 x + 59 = 0. x = negative 12 plus-or-minus StartRoot 85 EndRoot x = negative 6 plu
    7·2 answers
  • Which of the following equations could describe a square pyramid? Select all that apply.
    10·1 answer
  • ANSWER ASAP Which statements about the values of 4.099 and 40.99 are true? Select all that apply.
    10·1 answer
  • In a local ice sculpture contest, one group sculpted a block into a rectangular based pyramid. The dimensions of the base were 3
    7·1 answer
  • A survey of 250 households showed 26 owned at least one snow blower. Find a point estimate for p, thepopulation proportion of ho
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!