Answer:
7x - 5
Step-by-step explanation:
Let
Nina = x coins
Clayton = 6x - 5 coins
Expression for the total number of coins Nina and Clayton have altogether.
Nina + Clayton
= x + (6x - 5)
= x + 6x - 5
= 7x - 5
The correct answer and expression is 7x - 5
Answer:
Boat traveled 553.24 feet towards the lighthouse.
Step-by-step explanation:
In the figure attached AB is the light house of height 200 feet.
Angle of depression of the boat from the top of a lighthouse = angle of elevation of the lighthouse from the boat = 14°52'
so 1' =
degree
so angle of elevation at point C = 14 + 
So angle of elevation from C = (14 + 0.87) = 14.87°
Similarly, when boat arrives at point D angle of elevation = 45°10' = 45 +
= 45.17°
Now we have to calculate the distance CD, traveled by the boat.
In ΔABC
tan14.87 = 
0.2655 = 
BC = 
BC = 753.239 feet
Similarly in ΔABD
tan45.17 = 
1 = 
BD = 200 feet
So distance CD = BC - BD
CD = 753.239 - 200
= 553.24 feet
Therefore, Boat traveled 553.24 feet towards the lighthouse.
The paraboloid meets the x-y plane when x²+y²=9. A circle of radius 3, centre origin.
<span>Use cylindrical coordinates (r,θ,z) so paraboloid becomes z = 9−r² and f = 5r²z. </span>
<span>If F is the mean of f over the region R then F ∫ (R)dV = ∫ (R)fdV </span>
<span>∫ (R)dV = ∫∫∫ [θ=0,2π, r=0,3, z=0,9−r²] rdrdθdz </span>
<span>= ∫∫ [θ=0,2π, r=0,3] r(9−r²)drdθ = ∫ [θ=0,2π] { (9/2)3² − (1/4)3⁴} dθ = 81π/2 </span>
<span>∫ (R)fdV = ∫∫∫ [θ=0,2π, r=0,3, z=0,9−r²] 5r²z.rdrdθdz </span>
<span>= 5∫∫ [θ=0,2π, r=0,3] ½r³{ (9−r²)² − 0 } drdθ </span>
<span>= (5/2)∫∫ [θ=0,2π, r=0,3] { 81r³ − 18r⁵ + r⁷} drdθ </span>
<span>= (5/2)∫ [θ=0,2π] { (81/4)3⁴− (3)3⁶+ (1/8)3⁸} dθ = 10935π/8 </span>
<span>∴ F = 10935π/8 ÷ 81π/2 = 135/4</span>
Answer:
D.
Step-by-step explanation:
Adrienne did not enter her ATM withdrawal correctly.