Answer:
single payment variable annuity
Step-by-step explanation:
Answer:
Ruth's 1931 salary was equivalent to a 2015 salary of $1,247,368.
Step-by-step explanation:
This question can be solved by a rule of three.
Government statistics show a consumer price index of 15.2 for 1931 and 237 for 2015.
This means that $15.2 in 1931 is equivalent to $237 in 2015. So
$15.2 in 1931 - $237 in 2015
$80,000 in 1931 - $x in 2015



Ruth's 1931 salary was equivalent to a 2015 salary of $1,247,368.
Answer: 
Step-by-step explanation:
According to the given information, we have
Sample size : n= 50


Since population standard deviation is unknown, so we use t-test.
Critical value for 95 percent confidence interval :

Confidence interval : 

Required 95% confidence interval : 
Answer:
y2 = C1xe^(4x)
Step-by-step explanation:
Given that y1 = e^(4x) is a solution to the differential equation
y'' - 8y' + 16y = 0
We want to find the second solution y2 of the equation using the method of reduction of order.
Let
y2 = uy1
Because y2 is a solution to the differential equation, it satisfies
y2'' - 8y2' + 16y2 = 0
y2 = ue^(4x)
y2' = u'e^(4x) + 4ue^(4x)
y2'' = u''e^(4x) + 4u'e^(4x) + 4u'e^(4x) + 16ue^(4x)
= u''e^(4x) + 8u'e^(4x) + 16ue^(4x)
Using these,
y2'' - 8y2' + 16y2 =
[u''e^(4x) + 8u'e^(4x) + 16ue^(4x)] - 8[u'e^(4x) + 4ue^(4x)] + 16ue^(4x) = 0
u''e^(4x) = 0
Let w = u', then w' = u''
w'e^(4x) = 0
w' = 0
Integrating this, we have
w = C1
But w = u'
u' = C1
Integrating again, we have
u = C1x
But y2 = ue^(4x)
y2 = C1xe^(4x)
And this is the second solution
5.76 because the hundredths place is two spaces to the right of the decimal point.