Answer:
The absolute brightness of the Cepheid star after a period of 45 days is -5.95
Step-by-step explanation:
Since the absolute magnitude or brightness of a Cepheid star is related to its period or length of its pulse by
M = –2.78(log P) – 1.35 where M = absolute magnitude and P = period or length of pulse.
From our question, it is given that P = 45 days.
So, M = –2.78(log P) – 1.35
M = –2.78(log 45) – 1.35
M = –2.78(1.6532) – 1.35
M = -4.60 - 1.35
M = -5.95
So, the absolute magnitude or brightness M of a Cepheid star after a period P of 45 days is -5.95
Answer: 1/8
Step-by-step explanation: 3/4 x 1/6 = 24/3 (simplify to 1/8)
Answer:
18,354 - 4,672= 13,682
Step-by-step explanation:
I'm not sure what you meant but above is the answer of what I think you were asking.
= 6.37 * 10^4 = 637 * 10^2 = 63700
In short, Your Answer would be Option A
Hope this helps!
Answer:

Step-by-step explanation:
Given that from a well shuffled set of playing cards (52 in number) a card is drawn and without replacing it, next card is drawn.
A - the first card is 4
B - second card is ace
We have to find probability for

P(A) = no of 4s in the deck/total cards = 
After this first drawn if 4 is drawn, we have remaining 51 cards with 4 aces in it
P(B) = no of Aces in 51 cards/51 = 
Hence

(Here we see that A and B are independent once we adjust the number of cards. Also for both we multiply the probabilities)