For a probability distribution the expected value is the summation of product of probabilities with their respective data values. Let x be the probability that Jackson goes gym for 2 days and y be the probability that he goes gym for 3 days.
For the given case we have following values and their probabilities:
0 : 0.1
2 : x
3 : y
So the expected value will be = 0(0.1) + 2(x) + 3(y)
Expected value is given to be 2.05. So we can write the equation as:
2x + 3y = 2.05 (Equation 1)
Also for a probability distribution, the sum of probabilities must always equal to 1. So we can set up the second equation as:
0.1 + x + y = 1
x + y = 0.9 (Equation 2)
From Equation 2 we can write the value of x to be x = 0.9 - y. Using this value in equation 1, we get:
2(0.9 - y) + 3y = 2.05
1.8 - 2y + 3y = 2.05
1.8 + y = 2.05
y = 0.25
Using the value of y in equation 2 we get value of x to be 0.65
Therefore we can conclude that:
The probability that Jackson goes to gym for 2 days is 0.65 and the probability that he goes to gym for 3 days is 0.25
First, 123 - 55 = 68 which is how many boys voted. So, the ratio is 55:68
We are given that the elevator is descending, so the coefficient of t must be negative. The elevator's initial position is 500 feet above the ground, so this is a positive value of +500. Therefore the only choice that fits these is h(t) = -5t + 500.
Answer:
53 teachers
Step-by-step explanation:
Basically, what we need to do here is to find how many teachers there need to be, first. If there are 6,734 students in the school district and if maximum class size is 25, then the number of teachers needed is:
6,734 / 25 = 269.36
Of course, it's obvious that we can't have a decimal number of teachers, so we need to find integer (269 or 270).
If we take 269 teachers and 25 students per class, we get:
269 • 25 = 6,725 students, which is not enough, since there are 6,734 students.
That means that the number of teachers needed is 270.
It is given that there are already 217 teachers, meaning that 270-217=53 teachers have to be supplemented.