Answer:
<em>t=60</em>
Step-by-step explanation:
3/2t-16=4/3t-6
(subtract 4/3t from both sides)
3/2t-16-4/3t=-6
(add 16 to both sides)
3/2t-4/3t=-6+16
(simplify)
1/6t=10
(divide by 1/6 (or multiply by 6 on both sides)
t=60
First of all, a bit of theory: since the area of a square is given by

where s is the length of the square. So, if we invert this function we have
.
Moreover, the diagonal of a square cuts the square in two isosceles right triangles, whose legs are the sides, so the diagonal is the hypothenuse and it can be found by

So, the diagonal is the side length, multiplied by the square root of 2.
With that being said, your function could be something like this:
double diagonalFromArea(double area) {
double side = Math.sqrt(area);
double diagonal = side * Math.sqrt(2);
return diagonal;
}
Answer:
P(working product) = .99*.99*.96*.96 = .0.903
Step-by-step explanation:
For the product to work, all four probabilities must come to pass, so that
P(Part-1)*P(Part-2)*P(Part-3)*P(Part-4)
where
P(Part-1) = 0.96
P(Part-2) = 0.96
P(Part-3) = 0.99
P(Part-4) = 0.99
As all parts are independent, so the formula is P(A∩B) = P(A)*P(B)
P (Working Product) = P(Part-1)*P(Part-2)*P(Part-3)*P(Part-4)
P (Working Product) = 0.96*0.96*0.96*0.99*0.99
P(Working Product) = 0.903
Weight of an object=J
x=J/(379.2/150)
x=J/2.528
y=12.64/2.528
y=5
Hope this helps :)
we have

we know that
<u>The Rational Root Theorem</u> states that when a root 'x' is written as a fraction in lowest terms

p is an integer factor of the constant term, and q is an integer factor of the coefficient of the first monomial.
So
in this problem
the constant term is equal to 
and the first monomial is equal to
-----> coefficient is 
So
possible values of p are 
possible values of q are 
therefore
<u>the answer is</u>
The all potential rational roots of f(x) are
(+/-)
,(+/-)
,(+/-)
,(+/-)
,(+/-)
,(+/-)