Answer:
Bill launched a model rocket, and estimated its height h, In feet, after 1 seconds. His results are shown in the table
Time, 1 0 1 2 3 4
Height, h 0 110 190 240 255
Bill's data can be modeled by the function h(t) = -1612 + 128.
Which value is the best prediction for the height of the rocket after 5.5 seconds?
A 150 ft
B. 180 ft
C. 220 ft
D. 250 ft
E 260 ft
you mutliply 65 to 85%/0.85 and you get 55.25cm as your answer
The sum of two numbers is zero.
x + y = 0
y = -x
<span>Twice the smaller number subtracted from 3 times the larger number is 10.
Let x represent the larger number and y represent the smaller number.
Twice the smaller number: 2y
3 times the larger number: 3x
</span>Twice the smaller number subtracted from 3 times the larger number is 10.
3x - 2y = 10
-2y = -3x + 10
y = 3/2 x - 5
The equations are:
y = -x
y = 3/2 x - 5
The answer is the first choice.
For the answer to the question above, the answer is simple, and it is -1 (because even powers of an imaginary number or i will always give a -1).I hope my answer helped you with your problem. Have a nice day!
This question is incomplete. I got the complete part (the boldened part) of it from google as:
The following 98% confidence interval was obtained for μ1 - μ2, the difference between the mean drying time for paint cans of type A and the mean drying time for paint cans of type B:
4.90 hrs < μ1 - μ2 < 17.50 hrs.
Answer:
A paint manufacturer made a modification to a paint to speed up its drying time. Independent simple random samples of 11 cans of type A (the original paint) and 9 cans of type B (the modified paint) were selected and applied to similar surfaces. The drying times, in hours, were recorded. The summary statistics are as follows. Type A Type B x 1x1equals=76.3 hr x 2x2equals=65.1 hr s 1s1equals=4.5 hr s 2s2equals=5.1 hr n 1n1equals=11 n 2n2equals=9 The following 98% confidence interval was obtained for mu 1μ1minus−mu 2μ2, the difference between the mean drying time for paint cans of type A and the mean drying time for paint cans of type B. What does the confidence interval suggest about the population means?
The mean difference for the 98% confidence interval, the drying times of the two types of paints are (4.90, 17.50). This implies that Type A paint takes between 4.90 and 17.50 hours more to dry than type B paint.
Step-by-step explanation:
The mean difference for the 98% confidence interval, the drying times of the two types of paints are (4.90, 17.50). This implies that Type A paint takes between 4.90 and 17.50 hours more to dry than type B paint.
Only positive values comprise the confidence interval which suggests that the mean drying time for paint type A is greater than the mean drying time for paint type B. The modification appears to be effective in reducing drying times.