Answer:
Here the answer, dearie.
Step-by-step explanation:

So, 136 people can sit in cafeteria and the patio.
The quadratic formula, has a part we call the "discriminant" defined by the variables that are inside the square root, and is denotated by "delta":
<span>Δ=<span>b2</span>−4ac</span>
Whenever we solve a quadratic equation that is complete and we analyze the discriminant, we can get 3 scenarios:
<span>if→Δ>0<span>=></span>∃<span>x1</span>,<span>x2</span>/a<span>x2</span>+bx+c=0</span>
This just means: "if the discriminant is greater than zero, there will exist two x-intercepts"
And for the second scenario:
<span>if→Δ=0→∃<span>xo</span>/a<span>x2</span>+bx+c=0</span>
This means: "if the discriminant is equal to zero, there will be one and only one x-intercept"
And for the last scenario:
<span>if→Δ<0→∃x∉R/a<span>x2</span>+bx+c=0</span>
This means that :"if the discriminant is less than zero, there will be no x-intercepts"
So, if we take your excercise and analyze the the discriminant:
<span>3<span>x2</span>+7x+m=y</span>
we will find the values that satisfy y=0 :
<span>3<span>x2</span>+7x+m=0</span>
And we'll analyze the discriminant:
<span>Δ=<span>72</span>−4(3)(m)</span>
And we are only interested in the values that make the discriminant equal zero:
<span><span>72</span>−4(3)(m)=0</span>
All you have to do is solve for "m".
Answer:
a. We reject the null hypothesis at the significance level of 0.05
b. The p-value is zero for practical applications
c. (-0.0225, -0.0375)
Step-by-step explanation:
Let the bottles from machine 1 be the first population and the bottles from machine 2 be the second population.
Then we have
,
,
and
,
,
. The pooled estimate is given by
a. We want to test
vs
(two-tailed alternative).
The test statistic is
and the observed value is
. T has a Student's t distribution with 20 + 25 - 2 = 43 df.
The rejection region is given by RR = {t | t < -2.0167 or t > 2.0167} where -2.0167 and 2.0167 are the 2.5th and 97.5th quantiles of the Student's t distribution with 43 df respectively. Because the observed value
falls inside RR, we reject the null hypothesis at the significance level of 0.05
b. The p-value for this test is given by
0 (4.359564e-10) because we have a two-tailed alternative. Here T has a t distribution with 43 df.
c. The 95% confidence interval for the true mean difference is given by (if the samples are independent)
, i.e.,
where
is the 2.5th quantile of the t distribution with (25+20-2) = 43 degrees of freedom. So
, i.e.,
(-0.0225, -0.0375)