From the problem, the vertex = (0, 0) and the focus = (0, 3)
From the attached graphic, the equation can be expressed as:
(x -h)^2 = 4p (y -k)
where (h, k) are the (x, y) values of the vertex (0, 0)
The "p" value is the difference between the "y" value of the focus and the "y" value of the vertex.
p = 3 -0
p = 3
So, we form the equation
(x -0)^2 = 4 * 3 (y -0)
x^2 = 12y
To put this in proper quadratic equation form, we divide both sides by 12
y = x^2 / 12
Source:
http://www.1728.org/quadr4.htm
Answer and Step-by-step explanation:
According to the given situation, The r-value associated with the ordered pairs for the linear function is very nearest to zero which does not results in adequate presentation of the outcome.
A quadratic model could properly comprise of a combination of data, as the set of data has a turning point.
This result in data rises and falls which represents the graph of quadratic's graph
-120 ÷ 15 = -8.
Hope this helps.
From the given function modeling the height of the ball:
f(x)=-0.2x^2+1.4x+7
A] The maximum height of the ball will be given by:
At max height f'(x)=0
from f(x),
f'(x)=-0.4x+1.4
solving for x we get:
-0.4x=-1.4
x=3.5ft
thus the maximum height would be:
f(3.5)=-0.2(3.5)^2+1.4(3.5)+7
f(3.5)=9.45 ft
b]
How far from where the ball was thrown did this occur:
from (a), we see that at maximum height f'(x)=0
f'(x)=-0.4x+1.4
solving for x we get:
-0.4x=-1.4
x=3.5ft
This implies that it occurred 3.5 ft from where the ball was thrown.
c] How far does the ball travel horizontally?
f(x)=-0.2x^2+1.4x+7
evaluationg the expression when f(x)=0 we get:
0=-0.2x^2+1.4x+7
Using quadratic equation formula:
x=-3.37386 or x=10.3739
We leave out the negative and take the positive answer. Hence the answer 10.3739 ft horizontally.