Answer:
Boat traveled 553.24 feet towards the lighthouse.
Step-by-step explanation:
In the figure attached AB is the light house of height 200 feet.
Angle of depression of the boat from the top of a lighthouse = angle of elevation of the lighthouse from the boat = 14°52'
so 1' =
degree
so angle of elevation at point C = 14 + 
So angle of elevation from C = (14 + 0.87) = 14.87°
Similarly, when boat arrives at point D angle of elevation = 45°10' = 45 +
= 45.17°
Now we have to calculate the distance CD, traveled by the boat.
In ΔABC
tan14.87 = 
0.2655 = 
BC = 
BC = 753.239 feet
Similarly in ΔABD
tan45.17 = 
1 = 
BD = 200 feet
So distance CD = BC - BD
CD = 753.239 - 200
= 553.24 feet
Therefore, Boat traveled 553.24 feet towards the lighthouse.
Answer:
There's two ways to solve this.
Step-by-step explanation:
First way:
Let's divide the width and length by 2.3.
46÷2.3=20
69÷2.3=30
20×30
600 ft²
Second Way:
Let's find the area of the actual room.
46×69
3,174 ft²
Let's find the scale drawing squared.
2.3²=5.29
3,174÷5.29
600 ft²
Step-by-step explanation:
Since f(0) = f(5) = f(8) = 0, we have f(x) = Ax(x - 5)(x - 8), where A is a real constant.
We know that f(10) = 17.
=> A(10)(10 - 5)(10 - 8) = 17
=> A(10)(5)(2) = 17
=> 100A = 17, A = 0.17.
Hence the answer is f(x) = 0.17x(x - 5)(x - 8).
Just so u know, ur output value is f(x) and ur input value is x
f(x) = -2x^2 - 3x + 5....when ur input value(x) is -3
f(-3) = -2(-3^2) - 3(-3) + 5 =
f(-3) = -2(9) + 9 + 5
f(-3) = -18 + 14
f(-3) = -4 <==
Answer:
1
The probability is 
2
The probability is 
Step-by-step explanation:
From the question we are told that
The population mean is 
The standard deviation is 
The sample size is 
Generally the standard error for the sample mean
is mathematically evaluated as

substituting values


Apply central limit theorem[CLT] we have that
![P(\= X < 33) = [z < \frac{33 - \mu }{\sigma_{\= x}} ]](https://tex.z-dn.net/?f=P%28%5C%3D%20X%20%3C%2033%29%20%3D%20%20%5Bz%20%3C%20%20%5Cfrac%7B33%20-%20%20%5Cmu%20%7D%7B%5Csigma_%7B%5C%3D%20x%7D%7D%20%5D)
substituting values
![P(\= X < 33) = [z < \frac{33 - 28.29 }{4.48} ]](https://tex.z-dn.net/?f=P%28%5C%3D%20X%20%3C%2033%29%20%3D%20%20%5Bz%20%3C%20%20%5Cfrac%7B33%20-%20%2028.29%20%7D%7B4.48%7D%20%5D)
![P(\= X < 33) = [z < 1.05 ]](https://tex.z-dn.net/?f=P%28%5C%3D%20X%20%3C%2033%29%20%3D%20%20%5Bz%20%3C%20%201.05%20%5D)
From the z-table we have that

For the second question
Apply central limit theorem[CLT] we have that
![P(\= X > 30 ) = [z > \frac{30 - \mu }{\sigma_{\= x}} ]](https://tex.z-dn.net/?f=P%28%5C%3D%20X%20%3E%2030%20%29%20%3D%20%20%5Bz%20%3E%20%20%5Cfrac%7B30%20-%20%20%5Cmu%20%7D%7B%5Csigma_%7B%5C%3D%20x%7D%7D%20%5D)
substituting values
![P(\= X < 33) = [z > \frac{30 - 28.29 }{4.48} ]](https://tex.z-dn.net/?f=P%28%5C%3D%20X%20%3C%2033%29%20%3D%20%20%5Bz%20%3E%20%20%5Cfrac%7B30%20-%20%2028.29%20%7D%7B4.48%7D%20%5D)
From the z-table we have that

Thus

