For this case, the first thing we are going to do is write the generic equation of motion for the vertical axis.
We have then:

Where,
- <em>g: acceleration of gravity
</em>
- <em>vo: initial speed
</em>
- <em>h0: initial height
</em>
For the first body:

For the second body:

By the time both bodies have the same height we have:


Rewriting we have:



Clearing time:

Answer:
it takes 18.31s for the two window washers to reach the same height
The total population of the town is 2270 people.
25% of 150 = 37.5
700% of x = 37.5
x = 5.35714285
Answer:
Step-by-step explanation:
<u>Below numbers are divisible by the number of students:</u>
<u>Lets find GCF of 24 and 36:</u>
- 24 = 2*2*2*3
- 36 = 2*2*3*3
- GCF(24,36) = 2*2*3 = 12
The largest possible number of students is 12
ANSWER
x = ±1 and y = -4.
Either x = +1 or x = -1 will work
EXPLANATION
If -3 + ix²y and x² + y + 4i are complex conjugates, then one of them can be written in the form a + bi and the other in the form a - bi. In other words, between conjugates, the imaginary parts are same in absolute value but different in sign (b and -b). The real parts are the same
For -3 + ix²y
⇒ real part: -3
⇒ imaginary part: x²y
For x² + y + 4i
⇒ real part: x² + y (since x, y are real numbers)
⇒ imaginary part: 4
Therefore, for the two expressions to be conjugates, we must satisfy the two conditions.
Condition 1: Imaginary parts are same in absolute value but different in sign. We can set the imaginary part of -3 + ix²y to be the negative imaginary part of x² + y + 4i so that the
x²y = -4 ... (I)
Condition 2: Real parts are the same
x² + y = -3 ... (II)
We have a system of equations since both conditions must be satisfied
x²y = -4 ... (I)
x² + y = -3 ... (II)
We can rearrange equation (II) so that we have
y = -3 - x² ... (II)
Substituting into equation (I)
x²y = -4 ... (I)
x²(-3 - x²) = -4
-3x² - x⁴ = -4
x⁴ + 3x² - 4 = 0
(x² + 4)(x² - 1) = 0
(x² + 4)(x-1)(x+1) = 0
Therefore, x = ±1.
Leave alone (x² + 4) as it gives no real solutions.
Solve for y:
y = -3 - x² ... (II)
y = -3 - (±1)²
y = -3 - 1
y = -4
So x = ±1 and y = -4. We can confirm this results in conjugates by substituting into the expressions:
-3 + ix²y
= -3 + i(±1)²(-4)
= -3 - 4i
x² + y + 4i
= (±1)² - 4 + 4i
= 1 - 4 + 4i
= -3 + 4i
They result in conjugates