The solution would be like this for this specific problem:
sin(θ°) = √(2)/2
θ° = 360°n + sin⁻¹(√(2)/2) and θ° = 360°n + 180° −
sin⁻¹(√(2)/2)
θ° = 360°n + 45° and θ° = 360°n + 135° where n∈ℤ
360°*0 + 45° = 45°
360°*0 + 135° = 135°
360°*1 + 45° = 405°
<span>sin(225°) = -√(2)/2
</span>225 has an angle where sin theta= -(sqrt2)/2 therefore, the value of theta
cannot be 225 degrees.
What, is there a question or no?
So,
1. Type I profits $20
2. Type II profits $30
3. Type III profits $40
4. I/day < 100
5. Type I needs 5 hrs.
6. Type II needs 10 hrs.
7. Type III needs 15 hrs.
8. Total hrs. available: 2000 hrs.
Every +5 hrs. spent yields an extra $10.
If we use 500 hrs. to make 100 Type I stereos, we will profit $2000.
If we use 500 hrs. to make 50 Type II stereos, we will profit $1500.
If we use 495 hrs. to make 33 Type III stereos, we will profit $1320.
We should use the first 500 hrs. to make Type I stereos.
We should use the last 1500 hrs. to make Type II stereos.
$2000 + $4500 = x
$6500 = x
There must be 100 Type I stereos made along with 150 Type II stereos made.
Answer:
Approximately normal for large sample sizes
Step-by-step explanation:
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean
and standard deviation
, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
and standard deviation
.
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
In this question:
The distribution is unknown, so the sampling distribution will only be approximately normal when n is at least 30.
So the correct answer should be:
Approximately normal for large sample sizes