Answer:
shoot a irish spring green like flight
Explanation:Imagine you have data on the jaw structure of hundreds of species, and information about what each species ate. How could you use this information to figure out what the new species eats?
Answer:
The correct answer is A acetylcholine binds to a receptor protein on the motor end plate
Explanation:
The neurotransmitter acetylcholine is released by the motor neuron during the transmission of signals across a neuromuscular junction.
The released acetylcholine then diffuses the synaptic cleft and binds to the receptor protein present on the membrane of muscle fibre.
This ultimately result in the influx of sodium ion inside the muscle cell thereby causing depolarization to generate an action potential.
The bird species has presumably adapted to the conditions after the forest fire if they're still alive. They might have found a new shelter to live at and foods to eat and make it durable for the time period remaining to keep surviving.
Answer:
A) protects earth's surface
Explanation:
took the test
Answer:
A. NADH and FADH2 both donate electrons at the same location.
Explanation:
In the respiratory chain, four large protein complexes inserted into the mitochondrial inner membrane transport NADH and FADH₂ electrons (formed in glycolysis and the Krebs cycle) to oxygen gas, reducing them to NAD⁺ and FAD, respectively.
These electrons have great affinity for oxygen gas and, when combined with it, reduce it to water molecules at the end of the reaction.
Oxygen gas effectively participates in cellular respiration at this stage, so its absence would imply interruption of the process.
NADH and FADH₂ electrons, when attracted to oxygen, travel a path through protein complexes, releasing energy in this process.
The energy released by the NADH and FADH₂ electrons in the respiratory chain in theory yields <u>34</u> <u>ATP</u>, however, under normal conditions an average of 26 ATP molecules is formed.
If we consider that these 26 molecules are added to the two ATP formed in glycolysis and two ATP formed in the Krebs cycle, it can be said that cellular respiration reaches a maximum yield of 30 ATP per glucose molecule, although theoretically this number was 38 ATP per glucose molecule.