What ever number A is, it is going to be less than whatever number B is.
We know that
If a system has at least one solution, it is said to be consistent.
When you graph the equations, both equations represent the same line
so
the system has an infinite number of solutions
If a consistent system has an infinite number of solutions, it is dependent.
<span>
therefore
the system is </span>consistent, dependent and <span>equivalent
</span><span>
the answer is
</span>equivalent
Answer:
a. z = 2.00
Step-by-step explanation:
Hello!
The study variable is "Points per game of a high school team"
The hypothesis is that the average score per game is greater than before, so the parameter to test is the population mean (μ)
The hypothesis is:
H₀: μ ≤ 99
H₁: μ > 99
α: 0.01
There is no information about the variable distribution, I'll apply the Central Limit Theorem and approximate the sample mean (X[bar]) to normal since whether you use a Z or t-test, you need your variable to be at least approximately normal. Considering the sample size (n=36) I'd rather use a Z-test than a t-test.
The statistic value under the null hypothesis is:
Z= X[bar] - μ = 101 - 99 = 2
σ/√n 6/√36
I don't have σ, but since this is an approximation I can use the value of S instead.
I hope it helps!
The correct answer is Choice A.
If you plot the points on a graph, you will see that there is a slope of -1 and the y-intercept is (0, 3).
This matches the equation of y = -x + 3 in Choice A.