Answer:
4
Step-by-step explanation:
Given that :
Clients are interviewed in groups of 2 on the first day; meaning two persons at a time
Second day, clients are interviewed in groups of 4; meaning 4 persons at a time.
Therefore, if the same number of clients are to be interviewed on each day, the smallest number of clients that could be interviewed each day could be obtained by getting the Least Common Multiple of both numbers: 2 and 4
- - - - 2 - - - 4
2 - - - 1 - - - 2
2 - - - 1 - - - 1
Therefore, the Least common multiple is (2 * 2) = 4
Therefore, the smallest number of clients that could be interviewed each day is 4.
Lets represent Ana and Christion using the Letters A and C
a+c=500
c=a+150
now substitute c for a+150 back into the first equation
a+a+150=500
a+a=350
2a=350
Divide by two
a=175
Now that we know annie has 175 all we do is subtract that from the total (500)
C=325
Sure enough, 175 is 150 less than 325
Hope that helped, send me a message if you need clearing up :D
We assume all employees are either full-time or part-time.
36 = 24 + 12
If the number of full-time employees is 24 or less, the number of part-time employees must be 12 or more. (Thinking, based on knowledge of sums.)
_____
You can write the inequality in two stages.
- First, write and solve an equation for the number of full-time employees in terms of the number of part-time employees.
- Then apply the given constraint on full-time employees. This gives an inequality you can solve for the number of part-time employees.
Let f and p represent the numbers of full-time and part-time employees, respectively.
... f + p = 36 . . . . . . given
... f = 36 - p . . . . . . . subtract p. This is our expression for f in terms of p.
... f ≤ 24 . . . . . . . . . given
... (36 -p) ≤ 24 . . . . substitute for f. Here's your inequality in p.
... 36 - 24 ≤ p . . . . add p-24
... p ≥ 12 . . . . . . . . the solution to the inequality
Well im not to sure about yours but mine say the answer is A