The oceans and the atmosphere serves as a long-term storage area for water or nutrients.
Answer:
Explanation:
Normally, under anaerobic condition in yeast, pyruvate produced from glycolysis leads to the production of ethanol as shown below.
pyruvate ⇒ acetaldehyde + NADH ⇒ ethanol + NAD
The pyruvate is converted to acetaldehyde by the enzyme, pyruvate decarboxylase. It should be NOTED that carbon dioxide is released in this step. The acetaldehyde produced in the "first step" is then converted to ethanol by the enzyme alcohol dehydrogenase. It must be noted from the above that the steps are irreversible.
If a mutated strain of yeast is unique because it does not produce alcohol and lactic acid (which is referred to as toxic acid in the question); thus having a high level of pyruvate because of the presence of a novel enzyme. <u>The function of this novel enzyme will most likely be the conversion of acetaldehyde in the presence of carbondioxide back to pyruvate; thus making that step reversible</u>. This could be a possible explanation for the high level of pyruvate present in the yeast.
It’s not herbivorous because no, and it’s not detritus because again no, and not parasitic so your only answer left is mutualistic which it is
Answer:
the job of the tRNA is to read the message of the nucleic acids or nucleotides and translate it into proteins or amino acids . it translates the mRNA. gives the Ribosome directions on what kinds of proteins to make
Explanation:
ANSWER: A living organism intakes food, it breaks down into mostly water and large organic molecules. These large organic molecules are Fat, Proteins, Glucose, Starch and Cellulose. These molecules are still not usable by the cells so the body breaks these large polymers into small monomers.
In cow's muscles, protein muscles are built by tapping 4 amino acid monomers. Fat muscles are built by tapping 3 fatty acid monomers and 1 glycerol molecule.
Cows use glucose molecules to mix with oxygen to release chemical energy in cellular respiration. Cows can make fat molecules and glucose molecules because fatty acids and glycerols are made up of same atoms, C, H and O.