answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna11 [10]
2 years ago
10

A dielectric material, such as Teflon®, is placed between the plates of a parallel-plate capacitor without altering the structur

e of the capacitor. The charge on the capacitor is held fixed. How is the electric field between the plates of the capacitor affected? A dielectric material, such as Teflon®, is placed between the plates of a parallel-plate capacitor without altering the structure of the capacitor. The charge on the capacitor is held fixed. How is the electric field between the plates of the capacitor affected? The electric field becomes infinite because of the insertion of the Teflon®. The electric field becomes zero after the insertion of the Teflon®. The electric field decreases because of the insertion of the Teflon®. The electric field increases because of the insertion of the Teflon®. The electric field is not altered, because the structure remains unchanged. SubmitRequest Answer Provide Feedback Next
Engineering
1 answer:
Lina20 [59]2 years ago
8 0

Answer: The electric field decreases because of the insertion of the Teflon.

Explanation:

If the charge on the capacitor is held fixed, the electric field as a consequence of this charge distribution (directed from the positive charged plate to the negative charged one remains unchanged.

However, as the Teflon is a dielectric material, even though doesn't allow the free movement of the electrons as an answer to an applied electric field, it allows that the electrons be displaced from the equilibrium position, leaving a local negative-charged zone close to the posiitive plate of the capacitor, and an equal but opposite charged layer close to the negative plate.

In this way, a internal electric field is created, that opposes to the external one due to the capacitor, which overall effect is diminishing the total electric field, reducing the voltage between the plates, and  increasing the capacitance proportionally to the dielectric constant of the Teflon.  

You might be interested in
Consider the following class definitions: class smart class superSmart: public smart { { public: public: void print() const; voi
arsen [322]

Answer:

a) There is no any private member of smart which are public members of superSmart.

Explanation:

5 0
2 years ago
The rigid bar CDE is attached to a pin support at E and rests on the 30 mm diameter brass cylinder BD. A 22 mm diameter steel ro
Leno4ka [110]

Answer:

stress = 38.84 MPa

Explanation:

S_{D} = \alpha _{brass} * (delta T) *(L_{BD} )\\= (18.8 * 10^(-6) )*(30)*(0.3)\\= 0.0001692 m\\\\E_{BD} = stress / strain\\stress = E_{BD} * S_{D}\\stress = (200 *10^9) * (0.0001692)\\stress = 33.84 MPa

3 0
2 years ago
A steady tensile load of 5.00kN is applied to a square bar, 12mm on a side and having a length of 1.65m. compute the stress in t
Shtirlitz [24]

Answer:

The stress in the bar is 34.72 MPa.

The design factor (DF) for each case is:

A) DF=0.17

B) DF=0.09

C) DF=0.125

D) DF=0.12

E) DF=0.039

F) DF=1.26

G) DF=5.5

Explanation:

The design factor is the relation between design stress and failure stress. In the case of ductile materials like metals, the failure stress considered is the yield stress. In the case of plastics or ceramics, the failure stress considered is the breaking stress (ultimate stress). If the design factor is less than 1, the structure or bar will endure the applied stress. By the opposite side, when the DF is higher than 1, the structure will collapse or the bar will break.

we will calculate the design stress in this case:

\displaystyle \sigma_{dis}=\frac{T_l}{Sup}=\frac{5.00KN}{(12\cdot10^{-3}m)^2}=34.72MPa

The design factor for metals is:

DF=\displaystyle \frac{\sigma_{dis}}{\sigma_{f}}=\frac{\sigma_{dis}}{\sigma_{y}}

The design factor for plastic and ceramics is:

DF=\displaystyle \frac{\sigma_{dis}}{\sigma_{f}}=\frac{\sigma_{dis}}{\sigma_{u}}

We now need to know the yield stress or the ultimate stress for each material. We use the AISI and ASTM charts for steels, materials charts for non-ferrous materials and plastics safety charts for the plastic materials.

For these cases:

A) The yield stress of AISI 120 hot-rolled steel (actually is AISI 1020) is 205 MPa, therefore:

DF=\displaystyle\frac{34.72MPa}{205MPa}=0.17

B) The yield stress of AISI 8650 OQT 1000 steel is 385 MPa, therefore:

DF=\displaystyle\frac{34.72MPa}{385MPa}=0.09

C) The yield stress of ductile iron A536-84 (60-40-18) is 40Kpsi, this is 275.8 MPa, therefore:

DF=\displaystyle\frac{34.72MPa}{275.8MPa}=0.125

D) The yield stress of aluminum allot 6061-T6 is 290 MPa, therefore:

DF=\displaystyle\frac{34.72MPa}{290MPa}=0.12

E) The yield stress of titanium alloy Ti-6Al-4V annealed (certified by manufacturers) is 880 MPa, therefore:

DF=\displaystyle\frac{34.72MPa}{880MPa}=0.039

F) The ultimate stress of rigid PVC plastic (certified by PVC Pipe Association) is 4Kpsi or 27.58 MPa, therefore:

DF=\displaystyle\frac{34.72MPa}{27.58 MPa}=1.26

In this case, the bar will break.

F) You have to consider that phenolic plastics are used as matrix in composite materials and seldom are used alone with no reinforcement. In this question is not explained if this material is reinforced or not, therefore I will use the ultimate stress of most pure phenolic plastics, in this case, 6.31 MPa:

DF=\displaystyle\frac{34.72MPa}{6.31 MPa}=5.5

This material will break.

3 0
2 years ago
An optical mouse originally cost $31.85. Before it was removed from the store, it underwent the following changes in price. 27%
saul85 [17]

Answer:

b.

$43.21

Explanation:

8 0
2 years ago
Read 2 more answers
If the current on your power supply exceeds 500 mA it can damage the supply. Suppose the supply is set for 37 V. What is the sma
lilavasa [31]

Answer:

74 Ω

Explanation:

Data provided in the question:

Maximum value of the current that can be provided = 500 mA

= 500 × 10⁻³ A  

Applied voltage set for the system = 37 V

Now,  

The smallest resistance that can be measured    

= [ Applied voltage ] ÷ [ Maximum current that can be applied ]

= 37 ÷ (  500 × 10⁻³ )

= 74 Ω

4 0
2 years ago
Other questions:
  • A_____ transducer is a device that can convert an electronic controller output signal into a standard pneumatic output. A. pneum
    13·1 answer
  • The wall of drying oven is constructed by sandwiching insulation material of thermal conductivity k = 0.05 W/m°K between thin me
    8·1 answer
  • A negative pressure respirator brings fresh air to you through a hose<br>A) True<br>B)False​
    15·2 answers
  • tech A says that a Hall-effect sensor can be used in an electronic ignition system. Tech B says that an optical-type sensor can
    6·1 answer
  • The components of an electronic system dissipating 90 W are located in a 1-m-long circular horizontal duct of 15-cm diameter. Th
    11·1 answer
  • The Hamming encoder/decoder in the lecture detected and corrected one error bit. By adding a thirteen bit which is the exclusive
    13·1 answer
  • 4-6. A vertical cylindrical storage vessel is 10 m high and 2 m in diameter. The vessel contains liquid cyclohexane currently at
    10·1 answer
  • An inventor claims to have developed an engine that does not use fuel but operates as a power cycle at steady state while receiv
    10·2 answers
  • Thermal energy generated by the electrical resistance of a 5-mm-diameter and 4-m-long bare cable is dissipated to the surroundin
    12·1 answer
  • A dryer is shaped like a long semi-cylindrical duct of diameter 1.5 m. The base of the dryer is occupied with water-soaked mater
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!