Answer:
The maximum height is 191.063 ft
Step-by-step explanation:
We can easily solve this question by plotting the graph of the equation below
h(t)=-16t^2+Vt+h
Where
h = initial height = 2ft
V = initial speed = 110 ft/s
t = time in seconds
Please, see attached image below
The maximum height corresponds to
191.063 ft
Answer:
18.67% of bills are greater than $131
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What proportion of bills are greater than $131
This proportion is 1 subtracted by the pvalue of Z when X = 131. So



has a pvalue of 0.8133
1 - 0.8133 = 0.1867
18.67% of bills are greater than $131
Answer:
The area of the shaded region is 42.50 cm².
Step-by-step explanation:
Consider the figure below.
The radius of the circle is, <em>r</em> = 5 cm.
The sides of the rectangle are:
<em>l</em> = 11 cm
<em>b</em> = 11 cm.
Compute the area of the shaded region as follows:
Area of the shaded region = Area of rectangle - Area of circle
![=[l\times b]-[\pi r^{2}]\\\\=[11\times 11]-[3.14\times 5\times 5]\\\\=121-78.50\\\\=42.50](https://tex.z-dn.net/?f=%3D%5Bl%5Ctimes%20b%5D-%5B%5Cpi%20r%5E%7B2%7D%5D%5C%5C%5C%5C%3D%5B11%5Ctimes%2011%5D-%5B3.14%5Ctimes%205%5Ctimes%205%5D%5C%5C%5C%5C%3D121-78.50%5C%5C%5C%5C%3D42.50)
Thus, the area of the shaded region is 42.50 cm².
Answer:
trigonal bypyramidal
Step-by-step explanation:
It's difficult to explain without a drawing or a model, but it would basically arrange itself into two triangle based pyramids connected to each other at the base, which is trigonal bypyramidal.