answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tanzania [10]
2 years ago
12

For laminar flow over a flat plate, the local heat transfer coefficient hx is known to vary as x−1/2, where x is the distance fr

om the leading edge (x = 0) of the plate. What is the ratio of the average coefficient between the leading edge and some location x on the plate to the local coefficient at x?
Engineering
1 answer:
Reika [66]2 years ago
6 0

Answer:

2

Explanation:

So for solving this problem we need the local heat transfer coefficient at distance x,

h_x=cx^{-1/2}

We integrate between 0 to x for obtain the value of the coefficient, so\bar{h}_x =\frac{1}{x} \int\limit^x_0 h_x dx\\\bar{h}_x = \frac{c}{x} \int\limit^x_0 \frac{1}{\sqrt{x}}dx\\\bar{h}_x = \frac{c}{c} (2x^{1/2})\\\bar{h}_x = 2cx^{-1/2}

Substituing

\bar{h}_x=2h_x\\\frac{\bar{h}_x}{h_X}=2

The ratio of the average convection heat transfer coefficient over the entire length is 2

You might be interested in
A horizontal, cylindrical, tank, with hemispherical ends, is used to store liquid chlorine at 10 bar. The vessel is 4 m internal
sp2606 [1]

Answer: 0.021818m =2.18x10^-²m

Explanation: Using Laplace principle

Design pressure is =12 bar= 1200000N/m²

T = Wall thickness

Design stress=110Mn/m²= 110,000,000N/m²

Radius= diameter/2 =4/2=2m

Design stress=Hoop stress =Pr/t where p=internal pressure or internal pressure, r=radius and t= wall thickness.

As Laplace equation stated.

110,000,000= 1,2000,00 x 2/t

t= 2,400,000/110,000,000.

t= 0.021818m

t=2.18x10^-2m.

3 0
2 years ago
Annealing is a process by which steel is reheated and then cooled to make it less brittle. Consider the reheat stage for a 100-m
kodGreya [7K]

Complete question is;

Annealing is a process by which steel is reheated and then cooled to make it less brittle. Consider the reheat stage for a 100 mm thick plate (ρ = 7830 kg/m3, Cp = 550 J/kg K, k = 48 W/m K). The plate initially is at 200 °C and is to be heated to a minimum temperature of 550 °C. Heating is effected in a gas-fired furnace where the products of combustion at T∞ = 800 °C maintain a convection heat transfer coefficient of h = 250 W/m.K on both surfaces of the plate. How long should the plate be left in the furnace?

Answer:

860 seconds

Explanation:

We are given;

Initial Temperature; Ti = 200 °C

Minimum Temperature; T_i = 550 °C

T∞ = 800 °C

convection coefficient; h = 250 W/m².K

ρ = 7830 kg/m³

Cp = 550 J/kg K

k = 48 W/m K

Plate thickness = 100mm

Thus,L = 100/2 = 50mm = 0.05 m

Let's find the biot number from the formula;

Bi = hL/K

Bi = (250 × 0.05)/48

Bi = 0.2604

Now, lowest temperature in the slab is given as;

θ_o = (T_o - T∞)/(T_i - T∞)

θ_o = (550 - 800)/(200 - 800)

θ_o = 0.4167

Now, from online tables calculation, we can find the root of the biot number.

Thus, root of the biot number Bi = 0.2604 is;

ζ1 = 0.488 rad

Also, C1 is gotten as 1.0396

Now,formula for thermal diffusivity is;

α = k/ρc

α = 48/(7830 × 550)

α = 1.115 × 10^(-5) m²/s

Also, from online tables, f(ζ1) = 0.401

Thus, we can find the time the plate should the plate be left in the furnace from;

-(ζ1)²(αt/L²) = In 0.401

-(ζ1)²(αt/L²) = -0.9138

t = (-0.9138 × 0.05²)/-(0.488² × 1.115 × 10^(-5))

t ≈ 860 s

8 0
2 years ago
An 80-L vessel contains 4 kg of refrigerant-134a at a pressure of 160kPa. Determine (a) the temperature, (b) the quality, (c) th
makvit [3.9K]

Answer:

temperature -15.6 C, quality x=0.646, enthalpy h=667.20 KJ, volume of vapor phase Vg= 79.8 L

Explanation:

property table for R-134a

https://www.ohio.edu/mechanical/thermo/property_tables/R134a/R134a_PresSat.html

at 160 KPa , temperature = -15.66 C

quality x=mass of vapour/ total mass of liq-vap mixture

alternaternately: x=(v-vf)/(vg-vf)    

v=total volume i.e. volume of container"80L"   80L=0.08 cubic meter

vf=vol of liquid phase  vg=vol of vapor phase vf, vg values at 160Kpa

x=(0.08-0.0007437)/(0.1235-0.0007437)=0.646

enthalpy

h=hf+xhfg          hf, hfg values at 160Kpa

h=hf+xhfg=31.2+0.646(209.9)=166.80 KJ/Kg

for 4Kg R-134a h=m(166.80 KJ/Kg )=667.20 KJ

volume of vapor phase

vg at 160Kpa=0.1235 cubic meter for quality=1.

in this case quality=0.646 , so it will occupy 64.6% space of the vapor phase at quality=1.

vol. of vapor phase=0.646*0.1235=0.0798 cubic meter=79.8 L

7 0
2 years ago
A steam power plant operates on the reheat Rankine cycle. Steam enters the highpressure turbine at 12.5 MPa and 550°C at a rate
gayaneshka [121]

Answer:

A) condenser pressure = 9.73 kPa,

B) 10242 kw

C) 36.9%

Explanation:

given data

entrance pressure of steam = 12.5 MPa

temperature of steam = 550⁰c

flow rate of steam = 7.7 kg/s

outer pressure = 2 MPa

reheated steam temperature = 450⁰c

isentropic efficiency of turbine( nt ) = 85% = 0.85

isentropic efficiency of pump = 90% = 0.90

From steam tables

at 12.5 MPa and 550⁰c ; h3 = 3476.5 kJ/kg,  S3 = 6.6317 kJ/kgK

also for an Isentropic expansion

S4s = S3 .

therefore when S4s = 6.6317 kJ/kg and P4 = 2 MPa

h4s = 2948.1 kJ/kg

nt = 0.85

nt (0.85) = \frac{h3-h4}{h3-h4s} = \frac{3476.5 - h4}{3476.5 - 2948.1}

making h4 subject of the equation

h4 = 3476.5 - 0.85 (3476.5 - 2948.1)

h4 = 3027.3 kj/kg

at P5 = 2 MPa and T5 = 450⁰c

h5 = 3358.2 kj/kg,  s5 = 7.2815 kj/kgk

at P6 , x6 = 0.95  and s5 = s6

using nt = 0.85 we can calculate for h6 and h6s

from the chart attached below we can see that

p6 = 9.73 kPa, h6 = 2463.3 kj/kg

B) the net power output

solution is attached below

c) thermal efficiency

thermal efficiency = 1 - \frac{qout}{qin} = 1 - ( 2273.7/ 3603.8) = 36.9% ≈ 37%

8 0
2 years ago
Technician A that shielding gas nozzles may have different shapes. Technician B says that gelding gas nozzles is attached to the
Lilit [14]
B is correct! in this senecio
5 0
2 years ago
Other questions:
  • Consider a plane composite wall that is composed of two materials of thermal conductivities kA 0.1 W/mK and kB 0.04 W/mK and thi
    14·1 answer
  • A charge of 2.0 × 10–10 C is to be stored on each plate of a parallel-plate capacitor having an area of 650 mm2 (1.0 in.2 ) and
    14·1 answer
  • If the electric field just outside a thin conducting sheet is equal to 1.5 N/C, determine the surface charge density on the cond
    9·1 answer
  • Consider a very long rectangular fin attached to a flat surface such that the temperature at the end of the fin is essentially t
    9·1 answer
  • A bankrupt chemical firm has been taken over by new management. On the property they found a 20,000-m3 brine pond containing 25,
    13·1 answer
  • A single crystal of a metal that has the FCC crystal structure is oriented such that a tensile stress is applied parallel to the
    7·1 answer
  • A thin-walled tube with a diameter of 6 mm and length of 20 m is used to carry exhaust gas from a smoke stack to the laboratory
    7·1 answer
  • What action below would tell your computer to "Send" an email?
    14·2 answers
  • Determine the design angle ϕ (0∘≤ϕ≤90 ∘) between struts AB and AC so that the 400 lb horizontal force has a component of 600 lb
    10·1 answer
  • 1. A _____ is applied to a wall or roof rafters to add strength and keep the building straight and plumb.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!