Answer:
A) Roses
, C) Alfalfa
Step-by-step explanation:
Each ladybug symbol = 5 ladybugs
Roses: 35 ladybugs
Lettuce: 15 ladybugs
Alfalfa: 25 ladybugs
Grape vines: 10 ladybugs
10 ladybugs go from lettuce to alfalfa. You end up with:
Roses: 35 ladybugs
Lettuce: 5 ladybugs
Alfalfa: 35 ladybugs
Grape vines: 10 ladybugs
Roses and alfalfa end up with 35 ladybugs each.
Answer: A) Roses
, C) Alfalfa
Answer:
1.4in
Step-by-step explanation:
Length of Photo = 4in
Width of Photo = 3in
Unknown:
Value of X = ?
Solution:
Follow these steps:
Area of a rectangle = l x w
Since the photo is a rectangle; area of photo:
Area of photo = 4in x 3in = 12in²
For the area of the ad;
Length of ad = 4 + x
Width of ad = 3 + x
Given that,
the area of the photo =
area of ad
12in² =
area of ad
Area of ad = 24in²
Area of the ad;
(4 + x) (3 + x) = 24
12 + 4x + 3x + x² = 24
12 + 7x + x² = 24
x² + 7x = 24 - 12
x² + 7x = 12
x² + 7x - 12 = 0
Using the almighty formula where
a = 1, b = 7 and c = -12
x = 
x =
or ![\frac{-7 - \sqrt[]{-7^{2} - 4x1x-12 } }{2x1}](https://tex.z-dn.net/?f=%5Cfrac%7B-7%20-%20%5Csqrt%5B%5D%7B-7%5E%7B2%7D%20-%204x1x-12%20%7D%20%7D%7B2x1%7D)
x = 1.4 or -8.4
therefore the answer is 1.4in
x is 1.4in
Answer:
(5.4k+7.9m+8.1n) centimeters
Step-by-step explanation:
Given the side length of a triangle;
S1 = (1.3k+3.5m) cm
S2 = (4.1k-1.6n) cm
S3 = (9.7n+4.4m) cm
Perimeter of the triangle = S1+S2 + S3
Perimeter of the triangle = (1.3k+3.5m) + (4.1k-1.6n) + (9.7n+4.4m)
Collect the like terms;
Perimeter of the triangle = 1.3k+4.1k+3.5m+4.4m-1.6n+9.7n
Perimeter of the triangle = 5.4k+7.9m+8.1n
Hence the expression that represents the perimeter of the triangle is (5.4k+7.9m+8.1n) centimeters
A(bx − c) ≥ bc, implies (bx − c) ≥ bc /a and then bx ≥ bc/a + c, x<span>≥ c/a +c/b
so the solution is </span><span>3. [c/a + c/b, infinity)</span>
Answer:
See below.
Step-by-step explanation:
Well first, we need to find the weight of the table. We know that 8 boxes weighs a total of 240kg (since each box weights 30kg). Thus, we can conclude that the table weighs 70kg by doing 310-240=70.
Now, we can write our function. Let
equal the amount of boxes.
The table is a set weight, so that would be our constant.
Thus, we will have:

30x represents the weight each box of book adds to the total. One box equals 30kg, 2 boxes equal 60kg, etc.
The 70 represents the unchanging weight of the table.
In terms of W(x), it will be:
