Answer:
Step-by-step explanation:
Let t represent the number of years.
We have been given that When Joseph first starts working at a grocery store, his hourly rate is $10.
For each year he works at the grocery store, his hourly rate increases by $0.50. Increase in hourly rates after t years would be 
The hourly rates after t years will be 10 plus
.
We can represent this information in an equation as:

Therefore, the function
represents Joseph's hourly rates after t years.
<span>The discriminant of a quadratic equation is the b^2-4ac portion that the square root is taken of. If the discriminant is negative, then the function has 2 imaginary roots, if the discriminant is equal to 0, then the function has only 1 real root, and finally, if the discriminant is greater than 0, the function has 2 real roots. So let's look at the equations and see which have a positive discriminant.
f(x) = x^2 + 6x + 8
6^2 - 4*1*8
36 - 32 = 4
Positive, so f(x) has 2 real roots.
g(x) = x^2 + 4x + 8
4^2 - 4*1*8
16 - 32 = -16
Negative, so g(x) does not have any real roots
h(x) = x^2 – 12x + 32
-12^2 - 4*1*32
144 - 128 = 16
Positive, so h(x) has 2 real roots.
k(x) = x^2 + 4x – 1
4^2 - 4*1*(-1)
16 - (-4) = 20
Positive, so k(x) has 2 real roots.
p(x) = 5x^2 + 5x + 4
5^2 - 4*5*4
25 - 80 = -55
Negative, so p(x) does not have any real roots
t(x) = x^2 – 2x – 15
-2^2 - 4*1*(-15)
4 - (-60) = 64
Positive, so t(x) has 2 real roots.</span>