<u>Complete Question</u>
The circle is inscribed in triangle PRT. A circle is inscribed in triangle P R T. Points Q, S, and U of the circle are on the sides of the triangle. Point Q is on side P R, point S is on side R T, and point U is on side P T. The length of R S is 5, the length of P U is 8, and the length of U T is 6. Which statements about the figure are true?
Answer:
(B)TU ≅ TS
(D)The length of line segment PR is 13 units.
Step-by-step explanation:
The diagram of the question is drawn for more understanding,
The theorem applied to this problem is that of tangents. All tangents drawn to a circle from the same point are equal.
Therefore:
|PQ|=|PU|=8 Units
|ST|=|UT| =6 Units
|RS|=|RQ|=5 Units
(b)From the above, TU ≅ TS
(d)Line Segment |PR|=|PQ|+|QR|=8+5=`13 Units
Answer:
The Field's length is 93ft
Step-by-step explanation:
P=2L+2w
360=2(w+6)+2w
360=2w+12+2w
360=4w+12
348=4w
348/4=w
87=w
L=w+6
L=87+6
L=93
Answer:
The larger cross section is 24 meters away from the apex.
Step-by-step explanation:
The cross section of a right hexagonal pyramid is a hexagon; therefore, let us first get some things clear about a hexagon.
The length of the side of the hexagon is equal to the radius of the circle that inscribes it.
The area is

Where
is the radius of the inscribing circle (or the length of side of the hexagon).
Now we are given the areas of the two cross sections of the right hexagonal pyramid:
From these areas we find the radius of the hexagons:
Now when we look at the right hexagonal pyramid from the sides ( as shown in the figure attached ), we see that
form similar triangles with length
Therefore we have:

We put in the numerical values of
,
and solve for
:
