Answer:
Kindly check explanation
Step-by-step explanation:
From the relative frequency below:
For NORTH - SOUTH:
Monday - Thursday = 115 ; has a relative frequency of 75.16%,
Hence, we can obtain the row total since it amounts to 100% thus;
75.16% of row total = 115
0.7516× row total = 115
Row total = 115 / 0.7516 = 153.00
Hence, Friday - sunday:
Row total - (Monday-Thursday)
153 - 115 = 38
FOR EAST - WEST:
Monday - Thursday = 21 ; has a relative frequency of 25.30%,
Hence, we can obtain the row total since it amounts to 100% thus;
25.30% of row total = 21
0. 253 × row total = 21
Row total = 21 / 0.253 = 83.00
Hence, Friday - sunday:
Row total - (Monday-Thursday)
83 - 21 = 62
x = (38 / 100) × 100%
x = 0.38 × 100%
x = 38.00 %
Answer:
Step-by-step explanation:
Roll a number cube with 1 representing the first homeroom, 2 representing the second homeroom, 3 representing the third homeroom, and any other outcome representing the fourth homeroom.
Flip a coin 4 times, once for each homeroom, with heads up representing being assigned to the homeroom represented by that flip.
Draw a marble from a bag containing 5 white marbles, 5 black marbles, 5 red marbles, and 5 green marbles, with each color representing a different homeroom.
Spin a spinner with 8 congruent sections with 2 sections assigned to each homeroom.
Answer:

Step-by-step explanation:
Consider the given matrix
![A=\left[\begin{array}{ccc}9&-2&3\\2&17&0\\3&22&8\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%26-2%263%5C%5C2%2617%260%5C%5C3%2622%268%5Cend%7Barray%7D%5Cright%5D)
Let matrix B is
![B=\left[\begin{array}{ccc}b_{11}&b_{12}&b_{13}\\b_{21}&b_{22}&b_{23}\\b_{31}&b_{32}&b_{33}\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Db_%7B11%7D%26b_%7B12%7D%26b_%7B13%7D%5C%5Cb_%7B21%7D%26b_%7B22%7D%26b_%7B23%7D%5C%5Cb_%7B31%7D%26b_%7B32%7D%26b_%7B33%7D%5Cend%7Barray%7D%5Cright%5D)
It is given that

![\left[\begin{array}{ccc}9&-2&3\\2&17&0\\3&22&8\end{array}\right]=\left[\begin{array}{ccc}b_{11}&b_{12}&b_{13}\\b_{21}&b_{22}&b_{23}\\b_{31}&b_{32}&b_{33}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%26-2%263%5C%5C2%2617%260%5C%5C3%2622%268%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Db_%7B11%7D%26b_%7B12%7D%26b_%7B13%7D%5C%5Cb_%7B21%7D%26b_%7B22%7D%26b_%7B23%7D%5C%5Cb_%7B31%7D%26b_%7B32%7D%26b_%7B33%7D%5Cend%7Barray%7D%5Cright%5D)
On comparing corresponding elements of both matrices, we get



Therefore, the required values are
.
-2x + 3 > 3(2x - 1)
the inequality sign > means 'greater than'.
First simplify the right side of the equation by distributing the 3 over the parentheses:-
-2x + 3 > 6x - 3
Now add -6x to both sides of the inequality which gives us
-8x + 3 > -3
Adding -3 to both sides we have
-8x > -6
The next step is to divide both sides by -8 so x is isolated on the left side and this gives us the solution. However there is a rule with inequalities that if you divide the variable term by a negative the inequality is flipped. So in this case , greater that (>) becomes less than (<):-
-8x / -8 < -6/-8
x < 3/4 is your answer.
This is the concept of volumes of solid figures, given that the height of the right rectangular prism and the oblique triangular prism are 12 cm and both prisms have the same volume, we can conclude that:
Horizontal cross-sections of the prisms at the same height have the same area.