Answer:
gene flow is the transfer of genetic variation from one population to another.
option D
Answer:
C. Genetic material composed of nucleic acid
Explanation:
The information needed by every organism to perform life functions like reproduction, growth etc are held in the genetic material that the organism carries in its genome. Every genetic material of organisms is composed of nucleic acids, which are only two in nature i.e. Ribonucleic acid (RNA) and Deoxyribonucleic acid (DNA). This is a common feature of all organisms including bacteria and viruses that they contain genetic material which must be in form of a nucleic acid.
The viruses do not undergo a cell division, neither do they contain protein synthesis structures called Ribosomes because they do not have the ability to reproduce or perform any living process outside a living host cell. This means that they strictly depend on another organism's transcriptional, translational, replicational ability to survive.
The answers are as follows:
1. <span>An inhibitor has a structure that is so similar to the substrate that it can bond to the enzyme just like the substrate: t</span>his is called competitive inhibitor. A competitive inhibitor will compete with the substrate for the active site of the enzyme and bind to the active site, thus incapacitating the substrate from binding to the active site.
2. An inhibitor binds to a site on the enzyme that is not the active site: this is called non competitive inhibitors. Non competitive inhibitors bind to other site in the enzyme which is not the active site of the enzyme. The binding of the inhibitor changes the conformation of the enzyme as well as the active site, thus making it impossible for the substrate to bind to the enzyme effectively.
3. <span>usually, a(n) inhibitor forms a covalent bond with an amino acid side group within the active site, which prevents the substrate from entering the active site or prevents catalytic activity: this is called irreversible or permanent inhibition. Permanent inhibitors form covalent bonds with the enzyme and prevent substrate from binding to the enzyme.
4. T</span><span>he competitive inhibitor competes with the substrate for the ACTIVE SITE on the enzyme: The active site of an enzyme is the place where the substrate normally bind in order to activate a enzyme. Competitive inhibitors are those inhibitors that compete with the substrate for the active site of the enzyme and prevent the substrate from binding there.
5. W</span><span>hen the noncompetitive inhibitor is bonded to the enzyme, the shape of the ENZYME is distorted. The non competitive inhibitors are those inhibitors that bind to other places in the enzyme instead of the active site. The binding of the non competitive inhibitor usually distort the shape and the conformation of the enzyme thus preventing the substrate from binding to it effectively.
6. E</span><span>nzyme inhibitors disrupt normal interactions between an enzyme and its SUBSTRATE. The principal function of enzyme inhibitor is to prevent the substrate from binding to the appropriate enzyme. This is usually done in the human system in order to regulate the activities of enzymes.</span>
Answer:
that the salted water osmolarity was bellow 300mOsm/L.
Explanation:
A solution with osmolarity bellow 300mOsm/L is known as hypotonic and will cause a cell to swell and eventually burst if equilibrium is not reached