answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nikklg [1K]
2 years ago
9

A university surveyed recent graduates of the English department for their starting salaries. Four hundred graduates returned th

e survey. The average salary was $25,000. The population standard deviation was $2,500. What is the 95% confidence interval for the mean salary of all graduates from the English department
Mathematics
1 answer:
NeX [460]2 years ago
3 0

Answer:

Step-by-step explanation:

We want to determine a 95% confidence interval for the mean salary of all graduates from the English department.

Number of sample, n = 400

Mean, u = $25,000

Standard deviation, s = $2,500

For a confidence level of 95%, the corresponding z value is 1.96. This is determined from the normal distribution table.

We will apply the formula

Confidence interval

= mean ± z × standard deviation/√n

It becomes

25000 ± 1.96 × 2500/√400

= 25000 ± 1.96 × 125

= 25000 ± 245

The lower end of the confidence interval is 25000 - 245 =24755

The upper end of the confidence interval is 25000 + 245 = 25245

Therefore, with 95% confidence interval, the mean salary of all graduates from the English department is between $24755 and $25245

You might be interested in
"An ordinance requiring that a smoke detector be installed in all previously constructed houses has been in effect in a particul
Galina-37 [17]

Answer:

a) Probability that the claim is rejected when the actual value of p is 0.8 = P(X ≤ 15) = 0.0173

b) Probability of not rejecting the claim when p = 0.7, P(X > 15) = 0.8106

when p = 0.6, P(X > 15) = 0.4246

c) Check Explanation

The error probabilities are evidently lower when 15 is replaced with 14 in the calculations.

Step-by-step explanation:

p is the true proportion of houses with smoke detectors and p = 0.80

The claim that 80% of houses have smoke detectors is rejected if in a sample of 25 houses, not more than 15 houses have smoke detectors.

If X is the number of homes with detectors among the 25 sampled

a) Probability that the claim is rejected when the actual value of p is 0.8 = P(X ≤ 15)

This is a binomial distribution problem

A binomial experiment is one in which the probability of success doesn't change with every run or number of trials (probability that each house has a detector is 0.80)

It usually consists of a number of runs/trials with only two possible outcomes, a success or a failure (we are sampling 25 houses with each of them either having or not having a detector)

The outcome of each trial/run of a binomial experiment is independent of one another.

Binomial distribution function is represented by

P(X = x) = ⁿCₓ pˣ qⁿ⁻ˣ

n = total number of sample spaces = 25 houses sampled

x = Number of successes required = less than or equal to 15

p = probability of success = probability that a house has smoke detectors = 0.80

q = probability of failure = probability that a house does NOT have smoke detectors = 1 - p = 1 - 0.80 = 0.20

P(X ≤ 15) = Sum of probabilities from P(X = 0) to P(X = 15) = 0.01733186954 = 0.01733

b) Probability of not rejecting the claim when p= 0.7 when p= 0.6

For us not to reject the claim, we need more than 15 houses with detectors, hence, th is probability = P(X > 15), but p = 0.7 and 0.6 respectively for this question.

n = total number of sample spaces = 25 houses sampled

x = Number of successes required = more than 15

p = probability that a house has smoke detectors = 0.70, then 0.60

q = probability of failure = probability that a house does NOT have smoke detectors = 1 - p = 1 - 0.70 = 0.30

And 1 - 0.60 = 0.40

P(X > 15) = sum of probabilities from P(X = 15) to P(X = 25)

When p = 0.70, P(X > 15) = 0.8105639765 = 0.8106

When p = 0.60, P(X > 15) = 0.42461701767 = 0.4246

c) How do the "error probabilities" of parts (a) and (b) change if the value 15 in the decision rule is replaced by 14.

The error probabilities include the probability of the claim being false.

When X = 15

(Error probability when p = 0.80) = 0.0173

when p = 0.70, error probability = P(X ≤ 15) = 1 - P(X > 15) = 1 - 0.8106 = 0.1894

when p = 0.60, error probability = 1 - 0.4246 = 0.5754

When X = 14

(Error probability when p = 0.80) = P(X ≤ 14) = 0.00555

when p = 0.70, error probability = P(X ≤ 14) = 0.0978

when p = 0.60, error probability = P(X ≤ 14) = 0.4142

The error probabilities are evidently lower when 15 is replaced with 14 in the calculations.

Hope this Helps!!!

6 0
2 years ago
Write the ratio as a fraction in simplest form: 2.35 to 5.25.
Sliva [168]

Step-by-step explanation:

\frac{2.35}{5.25}  =  \frac{235}{525}  =  \frac{47}{105}  = 47 \:  : \: 105 \\

4 0
2 years ago
Determine the volume of the solid that lies between planes perpendicular to the x-axis at x=0 and x=4. The cross sections perpen
OverLord2011 [107]

Answer:

Volume = 16 unit^3

Step-by-step explanation:

Given:

- Solid lies between planes x = 0 and x = 4.

- The diagonals rum from curves y = sqrt(x)  to  y = -sqrt(x)

Find:

Determine the Volume bounded.

Solution:

- First we will find the projected area of the solid on the x = 0 plane.

                              A(x) = 0.5*(diagonal)^2

- Since the diagonal run from y = sqrt(x) to y = -sqrt(x). We have,

                              A(x) = 0.5*(sqrt(x) + sqrt(x) )^2

                              A(x) = 0.5*(4x) = 2x

- Using the Area we will integrate int the direction of x from 0 to 4 too get the volume of the solid:

                              V = integral(A(x)).dx

                              V = integral(2*x).dx

                               V = x^2

- Evaluate limits 0 < x < 4:

                               V= 16 - 0 = 16 unit^3

3 0
2 years ago
Solve the equation 1 4 (16 + 12x) = 28 by first using the distributive property. The equivalent equation is found by distributin
BARSIC [14]

Answer:

8

Step-by-step explanation:

Given the equation 1/4 (16 + 12x) = 28, to solve this first we open the bracket using the distributive property. According to this property, given A, B and C then:

A(B+C ) = AB+AC

Step 1:

1/4 (16 + 12x) = 28

= 1/4(16)+1/4(12x) = 28

= 4+3x = 28

Step 2:

We move 4 to the other side to have:

3x = 28-4

3x = 24

Step 3:

Divide both sides by 3 to have,:

3x/3 = 24/3

x = 8

The answer is 8

6 0
2 years ago
Read 2 more answers
Gene paid a deposit on a leased car. The deposit earns 2.8 percent simple annual interest. At the end of the year, the interest
Amiraneli [1.4K]
Interest = principle * rate * time...
I = PRT...we are going to rearrange this because we are looking for the principle...

I / (RT) = P
I = 22.40
R = 2.8%...turn to a decimal = 0.028
T = 1

sub and solve
22.40 / (0.028(1) = P
22.40 / 0.028 = P
800 = P....amount of original deposit is $ 800 <==

3 0
2 years ago
Read 2 more answers
Other questions:
  • In a factory that manufactures tires, a machine responsible for molding the tire has a failure rate of 0.2%. If 1,000 tires are
    6·1 answer
  • A bag contains eight yellow marbles, nine green marbles, three purple marbles, and five red marbles. Two marbles are chosen from
    14·2 answers
  • Helen has 48 cubic inches of clay to make a solid square right pyramid with a base edge measuring 6 inches. Which is the slant h
    14·2 answers
  • The fifth-grade classes at Brookfield School used five identical buses to go on a field trip. •There were a total of 40 seats on
    12·1 answer
  • Tim worker estimates his taxable income will be $7000. He is paid twice a month or 24 times a year. Because Tim has only one sou
    7·2 answers
  • The diagram shown here represents
    15·2 answers
  • Jose is applying to college. He receives information on 7 different colleges. He will apply to all of those he likes. He may lik
    14·1 answer
  • The graph of function f is shown on the coordinate plane. Graph the line representing function g, if g is defined as shown below
    12·2 answers
  • ) Determine the probability that a bit string of length 10 contains exactly 4 or 5 ones.
    7·1 answer
  • Evaluate b(x)=18−0.5x when x=−2,0, and 5.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!