Answer:

Step-by-step explanation:
90 cm in metres is = 0.09 m
Writing it as a fraction of 2.4 m
=> 
<u><em>In simplest form</em></u>
=> 
In this question there are several important information's worth noting.Based on these information's the answer can be easily found. It is given that the total capacity of the tank is 24000 gallons. in 24 hours or in 1 day the amount of water used is 650 gallons. The question requires us to find the time it will take to use 2/3 rd of the water in the tank.
then
2/3 rd water in respect to total water in tank = (2/3) * 24000
= 16000
So 2/3 rd water of full tank is equivalent to 16000 gallons.
Now
650 gallons of water is used in = 24 hours
So
16000 gallons of water will be used in = (24/650) * 16000
= 590.77 hours
So it will take 590.77 hours to consume 2/3rd of the total water present in the tank.
Answer:
1) a. False, adding a multiple of one column to another does not change the value of the determinant.
2) d. True, column-equivalent matrices are matrices that can be obtained from each other by performing elementary column operations on the other.
Step-by-step explanation:
1) If the multiple of one column of a matrix A is added to another to form matrix B then we get: |A| = |B|. Here, the value of the determinant does not change. The correct option is A
a. False, adding a multiple of one column to another does not change the value of the determinant.
2) Two matrices can be column-equivalent when one matrix is changed to the other using a sequence of elementary column operations. Correc option is d.
d. True, column-equivalent matrices are matrices that can be obtained from each other by performing elementary column operations on the other.
You do the implcit differentation, then solve for y' and check where this is defined.
In your case: Differentiate implicitly: 2xy + x²y' - y² - x*2yy' = 0
Solve for y': y'(x²-2xy) +2xy - y² = 0
y' = (2xy-y²) / (x²-2xy)
Check where defined: y' is not defined if the denominator becomes zero, i.e.
x² - 2xy = 0 x(x - 2y) = 0
This has formal solutions x=0 and y=x/2. Now we check whether these values are possible for the initially given definition of y:
0^2*y - 0*y^2 =? 4 0 =? 4
This is impossible, hence the function is not defined for 0, and we can disregard this.
x^2*(x/2) - x(x/2)^2 =? 4 x^3/2 - x^3/4 = 4 x^3/4 = 4 x^3=16 x^3 = 16 x = cubicroot(16)
This is a possible value for y, so we have a point where y is defined, but not y'.
The solution to all of it is hence D - { cubicroot(16) }, where D is the domain of y (which nobody has asked for in this example :-).
(Actually, the check whether 0 is in D is superfluous: If you write as solution D - { 0, cubicroot(16) }, this is also correct - only it so happens that 0 is not in D, so the set difference cannot take it out of there ...).
If someone asks for that D, you have to solve the definition for y and find that domain - I don't know of any [general] way to find the domain without solving for the explicit function).