(2−2n)−(5n−27) >0
distribute
2-2n -5n +27 >0
combine like terms
-7n +29 >0
subtract 29 from each side
-7n> -29
divide by -7 (flips the inequality)
n < -29/-7
n <4.14
natural numbers are 1,2,3,4......
n must be 1,2,3,4
Answer: 1,2,3,4
Answer:
The third option listed: ![\sqrt[3]{2x} -6\sqrt[3]{x}\\](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D%5C%5C)
Step-by-step explanation:
We start by writing all the numerical factors inside the qubic roots in factor form (and if possible with exponent 3 so as to easily identify what can be extracted from the root):
![7\sqrt[3]{2x} -3\sqrt[3]{16x} -3\sqrt[3]{8x} =\\=7\sqrt[3]{2x} -3\sqrt[3]{2^32x} -3\sqrt[3]{2^3x} =\\=7\sqrt[3]{2x} -3*2\sqrt[3]{2x} -3*2\sqrt[3]{x}=\\=7\sqrt[3]{2x} -6\sqrt[3]{2x} -6\sqrt[3]{x}](https://tex.z-dn.net/?f=7%5Csqrt%5B3%5D%7B2x%7D%20%20-3%5Csqrt%5B3%5D%7B16x%7D%20-3%5Csqrt%5B3%5D%7B8x%7D%20%3D%5C%5C%3D7%5Csqrt%5B3%5D%7B2x%7D%20%20-3%5Csqrt%5B3%5D%7B2%5E32x%7D%20-3%5Csqrt%5B3%5D%7B2%5E3x%7D%20%3D%5C%5C%3D7%5Csqrt%5B3%5D%7B2x%7D%20%20-3%2A2%5Csqrt%5B3%5D%7B2x%7D%20-3%2A2%5Csqrt%5B3%5D%7Bx%7D%3D%5C%5C%3D7%5Csqrt%5B3%5D%7B2x%7D%20%20-6%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D)
And now we combine all like terms (notice that the only two terms we can combine are the first two, which contain the exact same radical form:
![7\sqrt[3]{2x} -6\sqrt[3]{2x} -6\sqrt[3]{x}=\\=\sqrt[3]{2x} -6\sqrt[3]{x}](https://tex.z-dn.net/?f=7%5Csqrt%5B3%5D%7B2x%7D%20%20-6%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D%3D%5C%5C%3D%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D)
Therefore this is the simplified radical expression: ![\sqrt[3]{2x} -6\sqrt[3]{x}\\](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D%5C%5C)
Answer:
a) r ^ ¬q
b) p ^ꓥqꓥ^ r
c) r → p
d) p ^ ¬qꓥ^ r
e) (p ^ q) → r
f) r ↔ (q v p)
Step-by-step explanation:
ꓥ^ = AND Conjunction
vꓦ = OR disjunction
¬ = NOT Negation
↔ = Double Implication
→ = implication