Answer:
Explanation:Twenty fruit flies are placed in each of four glass tubes. The tubes are sealed. Tubes I and II are partially covered with black paper; Tubes III and IV are not covered. The tubes are placed as shown. Then they are exposed to blue light for five minutes. The number of flies in the uncovered part of each tube is shown in the drawing.
These data show that these flies respond to (respond means move to or away from):
Answer:
About composition of water and organisms that lives there.
Explanation:
scientists might be able to learn about the composition of seawater that was present millions of years ago if we study those stones that comes in contact to that ancient seawater because the traces of particles still present on it. This study provides valuable information about ancient times of earth and its natural resources. These rocks also provides animals that were present in that sea water at that time.
Answer:
The correct answer is - C. sqoop.
Explanation:
The Sqoop is tool created to changing or transfer in between a relational database and Hadoop HDFS servers. This tool import the data from the hadhoop to relational system and then export relational system to hadoop file system. It is command line interface application tool that helps in importing and exporting.
Thus, the correct answer is - option C
Answer:
a) The response indicates that a pH below or above this range will most likely cause enolase to denature/change its shape and be less efficient or unable to catalyze the reaction.
b)The response indicates that the appropriate negative control is to measure the reaction rate (at the varying substrate concentrations) without any enzyme present.
c)The response indicated that the enolase has a more stable/functional/correct/normal protein structure at the higher temperature of 55°C than at 37°C because the enzyme is from an organism that is adapted to growth at 55°C.
Explanation:
Enolase catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate during both glycolysis and gluconeogenesis.In bacteria, enolases are highly conserved enzymes and commonly exist as homodimers.
The temperature optimum for enolase catalysis was 80°C, close to the measured thermal stability of the protein which was determined to be 75°C, while the pH optimum for enzyme activity was 6.5. The specific activities of purified enolase determined at 25 and 80°C were 147 and 300 U mg−1 of protein, respectively. Km values for the 2-phosphoglycerate/phosphoenolpyruvate reaction determined at 25 and 80°C were 0.16 and 0.03 mM, respectively. The Km values for Mg2+ binding at these temperatures were 2.5 and 1.9 mM, respectively.
Enolase-1 from Chloroflexus aurantiacus (EnoCa), a thermophilic green non-sulfur bacterium that grows photosynthetically under anaerobic conditions. The biochemical and structural properties of enolase from C. aurantiacus are consistent with this being thermally adapted.
Answer:
<em><u>What does she need from the food she ate and the air she breathes so that she can go on her run? </u></em>
A. Rosa needs carbohydrates rich food (bread) to carry out her jogging activity. Protein-rich food before exercise is not recommended unless she is on a weight loss program (diet plan).
B. Rosa needs oxygen to perform aerobic respiration, which is required for maximum release of energy (36 molecules per reaction run). Anaerobic reactions yield less energy (2 molecules of ATP per reaction run) and are not recommended.
<em><u>How do Rosa's body systems work together to get the molecules she needs into her cells?</u></em>
Rosa's body cells need carbohydrates (glucose) and oxygen to perform aerobic respiration for the release of maximum energy. The glucose and oxygen molecules are provided to the cells via diffusion into the bloodstream. During exercise/jogging, complex molecules of carbohydrates such as starch (present in bread) are broken down into simple molecules (glucose) which are diffused into the blood. Likewise, a high amount of oxygen is provided to the body's cells via diffusion in blood, which is carried out by the faster movement of lungs and heart. The combined action results in the supply of both types of molecules to enter the cell where mitochondria use these substrates to produce energy molecules (ATPs).
<em><u>How do hair cells use these molecules to release energy for her body to run?</u></em>
The substrates (glucose and oxygen) enters the bloodstream and then taken up to the cell. Then they are provided to the mitochondria for the release of energy in the form of ATP. This is why mitochondria are known as the powerhouse of the cells. Within the cell, energy is released in a three-step process, i.e. glycolysis, the Krebs cycle, and oxidative phosphorylation. Here glucose reacts with oxygen. In the end, aerobic respiration per reaction run produces 36 molecules of ATP which are sufficient to meet intensive energy needs. During excrcise, the supply of oxygen and glucose is also faster due to faster lungs and heart actions.
PS: Anaerobic respiration cannot meet energy demands faster because the reaction produces only 2 ATP molecules per reaction run.