Answer:
The right answer is Letter A
Explanation:
The proposed model for the mechanism of initial transcription that suggests the entire RNA polymerase enzyme moves along the DNA is <em>transient-excursion model</em>, and the proposed model that is best supported by experimental findings is<em> scrunching model.</em>
<em>Because RNA polymerase leaves the promoter, translocate a short way along DNA template, synthesizes a short transcript before aborting transcript, releasing the transcript and returning to its original location on promoter. That is the transient-excursion model.</em>
<em>The scrunching model downstream DNA is pulled into the enzyme and has accumulated within the enzyme as single stranded bulges.</em>
<em>Experiments show that scrunching is right, experiments using single molecule analyses that allow the positions of different parts of polymerase to be measured relative to each other and to the template DNA during transcription.</em>
Answer:
A's T's C's and G's
Explanation:
Adenine, Thymine, Cytosine, and Guanine
Answer:
What is the relationship between increased carbon in the ocean and increased carbon in the soil?
How else might carbon be transferred to soil? Direct because as you increase 1 you increase the other due to the terrestrial plant and oceanic plankton requirements of water, nutrients and CO2.
Explanation:
Hope this <em><u>Helped!</u></em> :D
Answer:
The total amount of matter on Earth constantly increases.
Explanation:
This is because there are always new things taking birth every second and they have matter in them, so the matter is increasing constantly.
Answer:In many ways, meiosis is a lot like mitosis. The cell goes through similar stages and uses similar strategies to organize and separate chromosomes. In meiosis, however, the cell has a more complex task. It still needs to separate sister chromatids (the two halves of a duplicated chromosome), as in mitosis. But it must also separate homologous chromosomes, the similar but nonidentical chromosome pairs an organism receives from its two parents.
Explanation:Mitosis(Opens in a new window)(Opens in a new window) is used for almost all of your body’s cell division needs. It adds new cells during development and replaces old and worn-out cells throughout your life. The goal of mitosis is to produce daughter cells that are genetically identical to their mothers, with not a single chromosome more or less.
Meiosis, on the other hand, is used for just one purpose in the human body: the production of gametes—sex cells, or sperm and eggs. Its goal is to make daughter cells with exactly half as many chromosomes as the starting cell.
To put that another way, meiosis in humans is a division process that takes us from a diploid cell—one with two sets of chromosomes—to haploid cells—ones with a single set of chromosomes. In humans, the haploid cells made in meiosis are sperm and eggs. When a sperm and an egg join in fertilization, the two haploid sets of chromosomes form a complete diploid set: a new genome.