The variable is Quantitative, has Interval level of measurement.
Variables which can be quantified & expressed numerically are Quantitative variables. Eg : as given , price
Variables which cant be qualified & expressed numerically are Qualitative variables. Eg : level of honesty, loyalty etc
Nominal & Ordinal are qualitative variables : signifying yes or no to a category (like men or women) , or ranks (x better than y) respectively. So price level is not such categorical & ordinal ratio.
Quantitative ratio variables are with reference to time , or are in forms of rate (like speed , growth per year). So, price level is not such ratio variable also.
Price is a quantitative variable, in which the ranking, its difference can be calculated. This is characteristic of a <u>Quantitative Interval Variable</u>.
Part a:
x + y = 55
y = x + 25
part b:
jackie runs 15 minutes every day.
part c:
it is not possible for jackie to spend 45 minutes a day dancing, since the time she spends dancing and running is 55 minutes, and we know that it takes 15 minutes to run
step-by-step explanation:
let's call and while jackie is dancing
let's call x while jackie is running
then we know that jackie runs and dances for a total of 55 minutes every day
this means that:
x + y = 55
we also know that jackie dances 25 minutes more than she runs.
this meant that:
y = x + 25
now we substitute the second equation in the first and solve for the variable x
x + x + 25 = 552x = 55-252x = 30x = 15
jackie runs 15 minutes every day.
now we find the value of the variable -y
15 + y = 55y = 55-15y = 40
note that it is not possible for jackie to spend 45 minutes a day dancing, since the time she spends dancing and running is 55 minutes, and we know that it takes 15 minutes to run
Answer:
C
Step-by-step explanation:
Statement C of the following statements is true
C). Spin-locks can be used to prevent busy waiting in the implementation of semaphore.