The Jenkins family originals come from father Leroy Jenkins
A cylinder with a circumference of about 50 units is formed.
Step-by-step explanation:
Step 1:
The perimeter of the square is 32 units. The perimeter of a square is given by 4 times its side length.

So the side length of the square is 8 units.
If a square is rotated a cylinder will be formed. So the options with a cone are wrong as a cone is formed when a triangle is rotated.
Step 2:
To calculate the circumference of the cylinder, we multiply 2π with the radius. The radius is the same as the side length of the square. So r is 8 units.
The circumference of the cylinder 
So the circumference of the cylinder is approximately equal to 50 units so the answer is the fourth option, a cylinder with a circumference of about 50 units.
If you have 1/8 in every loaf and 1 teaspoon of nutmeg is 8/8 and you have 4 of those think how much is 8/8 x 4.
Answer:

Step-by-step explanation:
Consider the given matrix
![A=\left[\begin{array}{ccc}9&-2&3\\2&17&0\\3&22&8\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%26-2%263%5C%5C2%2617%260%5C%5C3%2622%268%5Cend%7Barray%7D%5Cright%5D)
Let matrix B is
![B=\left[\begin{array}{ccc}b_{11}&b_{12}&b_{13}\\b_{21}&b_{22}&b_{23}\\b_{31}&b_{32}&b_{33}\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Db_%7B11%7D%26b_%7B12%7D%26b_%7B13%7D%5C%5Cb_%7B21%7D%26b_%7B22%7D%26b_%7B23%7D%5C%5Cb_%7B31%7D%26b_%7B32%7D%26b_%7B33%7D%5Cend%7Barray%7D%5Cright%5D)
It is given that

![\left[\begin{array}{ccc}9&-2&3\\2&17&0\\3&22&8\end{array}\right]=\left[\begin{array}{ccc}b_{11}&b_{12}&b_{13}\\b_{21}&b_{22}&b_{23}\\b_{31}&b_{32}&b_{33}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%26-2%263%5C%5C2%2617%260%5C%5C3%2622%268%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Db_%7B11%7D%26b_%7B12%7D%26b_%7B13%7D%5C%5Cb_%7B21%7D%26b_%7B22%7D%26b_%7B23%7D%5C%5Cb_%7B31%7D%26b_%7B32%7D%26b_%7B33%7D%5Cend%7Barray%7D%5Cright%5D)
On comparing corresponding elements of both matrices, we get



Therefore, the required values are
.
First of all, a bit of theory: since the area of a square is given by

where s is the length of the square. So, if we invert this function we have
.
Moreover, the diagonal of a square cuts the square in two isosceles right triangles, whose legs are the sides, so the diagonal is the hypothenuse and it can be found by

So, the diagonal is the side length, multiplied by the square root of 2.
With that being said, your function could be something like this:
double diagonalFromArea(double area) {
double side = Math.sqrt(area);
double diagonal = side * Math.sqrt(2);
return diagonal;
}