Answer:
c. honeypot
Explanation:
A honeypot is a computer or a network used to mimic the actual target of a cyberattack. It is also used to detect attacks on the network and divert them from the real network. This is used to gain insight into how cyberattacks are carried out. With such knowledge, robust security systems can be put in place.
Answer:
<u>Explanation:</u>
An input statement using the input function at the shell prompt is as follows:
If a prompt asks for a input, a number is to be added
num = input ('Number: ')
num = num + 1
print(num)
Explanation of results: This gives error at line num= num + 1 as cannot convert int object to str implicitly
Answer:
<u>The total time elapsed from the time a bit is created (from the original analog signal at Host A) until the bit is decoded (as part of the analog signal at Host B is </u><u>25.11 ms</u>
Explanation:
Host A first converts the analog signal to a digital 64kbps stream and then groups it into 56-byte packets. The time taken for this can be calculated as:
time taken 1= 
= (56 x 8) bits / 64 x 10³ bits/s
= 7 x 10⁻³s
time taken 1= 7 ms
The transmission rate of the packet from Host A to Host B is 4 Mbps. The time taken to transfer the packets can be calculated as:
time taken 2= (56 x 8) bits / 4 x 10⁶ bits/s
= 1.12 x 10⁻⁴ s
time taken 2= 112 μs
The propagation delay is 18 ms.
To calculate the total time elapsed, we need to add up all the time taken at each individual stage.
<u />
<u> = Time taken 1 + Time taken 2 + Propagation Delay</u>
= 7 ms + 112 μs + 18 ms
= 0.025112 s
= 25.11 ms
Base on the question, and in my further computation, the possible answers would be the following and I hope you are satisfied with my answer and feel free to ask for more.
- If you want to determine the Thevenin equivalent voltage and resistance without overloading the battery, then apply some known resistance
<span><span>RL</span><span>RL</span></span> and measure the output voltage as <span><span>VL</span><span>VL</span></span>. Measure the voltage without a load as <span><span>V<span>OC</span></span><span>V<span>OC</span></span></span>. The voltage divider equation tells us that
<span><span><span>VL</span>=<span>V<span>OC</span></span><span><span>RL</span><span><span>R<span>TH</span></span>×<span>RL</span></span></span></span><span><span>VL</span>=<span>V<span>OC</span></span><span><span>RL</span><span><span>R<span>TH</span></span>×<span>RL</span></span></span></span></span>
Solve for <span><span>R<span>TH</span></span><span>R<span>TH</span></span></span>, and you know that <span><span><span>V<span>TH</span></span>=<span>V<span>OC</span></span></span><span><span>V<span>TH</span></span>=<span>V<span>OC</span></span></span></span>.