3,000,000+200,000+90,000+8,000+70+6
Answer:
60.36 steps West from centre
85.36 steps North from centre
Step-by-step explanation:
<em>Refer to attached</em>
Musah start point and movement is captured in the picture.
- 1. He moves 50 steps to North,
- 2. Then 25 steps to West,
- 3. Then 50 steps on a bearing of 315°. We now North is measured 0°
or 360°, so bearing of 315° is same as North-West 45°.
<em />
<em>Note. According to Pythagorean theorem, 45° right triangle with hypotenuse of a has legs equal to a/√2.</em>
<u />
<u>How far West Is Musah's final point from the centre?</u>
<u>How far North Is Musah's final point from the centre?</u>
Answer:
Step-by-step explanation:
We are given that 30% of California residents have adequate earthquake supplies.
a) Ramon variable X denotes the number of the california residents that have adequate earthquake insurance
B) x can take value 1 ,2 ,3 ......
C)The distribution of random variable is geometric distribution with parameter p=0.3
The pmf of geometric distribution is

D)P(X=1) or P(X=2)=P(X=1)+P(X=2)
P(X=1) or P(X=2)=
E)

F)

p is the resident who does not have adequate earthquake supplies.
p = 1-0.3 = 0.7

G)
Answer:
![x_3 = \left[\begin{array}{c}4&3&1\\0\end{array}\right]](https://tex.z-dn.net/?f=x_3%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%263%261%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
According to the given situation, The computation of all x in a set of a real number is shown below:
First we have to determine the
so that 
![\left[\begin{array}{cccc}1&-3&5&-5\\0&1&-3&5\\2&-4&4&-4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%5C0%261%26-3%265%5C%5C2%26-4%264%26-4%5Cend%7Barray%7D%5Cright%5D)
Now the augmented matrix is
![\left[\begin{array}{cccc}1&-3&5&-5\ |\ 0\\0&1&-3&5\ |\ 0\\2&-4&4&-4\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%20%7C%5C%200%5C%5C0%261%26-3%265%5C%20%7C%5C%200%5C%5C2%26-4%264%26-4%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
After this, we decrease this to reduce the formation of the row echelon
![R_3 = R_3 -2R_1 \rightarrow \left[\begin{array}{cccc}1&-3&5&-5\ |\ 0\\0&1&-3&5\ |\ 0\\0&2&-6&6\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_3%20%3D%20R_3%20-2R_1%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%20%7C%5C%200%5C%5C0%261%26-3%265%5C%20%7C%5C%200%5C%5C0%262%26-6%266%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
![R_3 = R_3 -2R_2 \rightarrow \left[\begin{array}{cccc}1&-3&5&-5\ |\ 0\\0&1&-3&5\ |\ 0\\0&0&0&-4\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_3%20%3D%20R_3%20-2R_2%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%20%7C%5C%200%5C%5C0%261%26-3%265%5C%20%7C%5C%200%5C%5C0%260%260%26-4%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
![R_2 = 4R_2 +5R_3 \rightarrow \left[\begin{array}{cccc}1&-3&5&-5\ |\ 0\\0&4&-12&0\ |\ 0\\0&0&0&-4\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_2%20%3D%204R_2%20%2B5R_3%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%20%7C%5C%200%5C%5C0%264%26-12%260%5C%20%7C%5C%200%5C%5C0%260%260%26-4%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
![R_2 = \frac{R_2}{4}, R_3 = \frac{R_3}{-4} \rightarrow \left[\begin{array}{cccc}1&-3&5&-5\ |\ 0\\0&1&-3&0\ |\ 0\\0&0&0&1\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_2%20%3D%20%5Cfrac%7BR_2%7D%7B4%7D%2C%20%20R_3%20%3D%20%5Cfrac%7BR_3%7D%7B-4%7D%20%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-3%265%26-5%5C%20%7C%5C%200%5C%5C0%261%26-3%260%5C%20%7C%5C%200%5C%5C0%260%260%261%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
![R_1 = R_1 +3 R_2 \rightarrow \left[\begin{array}{cccc}1&0&-4&-5\ |\ 0\\0&1&-3&0\ |\ 0\\0&0&0&-1\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_1%20%3D%20R_1%20%2B3%20R_2%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-4%26-5%5C%20%7C%5C%200%5C%5C0%261%26-3%260%5C%20%7C%5C%200%5C%5C0%260%260%26-1%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)
![R_1 = R_1 +5 R_3 \rightarrow \left[\begin{array}{cccc}1&0&-4&0\ |\ 0\\0&1&-3&0\ |\ 0\\0&0&0&-1\ |\ 0\end{array}\right]](https://tex.z-dn.net/?f=R_1%20%3D%20R_1%20%2B5%20R_3%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-4%260%5C%20%7C%5C%200%5C%5C0%261%26-3%260%5C%20%7C%5C%200%5C%5C0%260%260%26-1%5C%20%7C%5C%200%5Cend%7Barray%7D%5Cright%5D)

![x = \left[\begin{array}{c}4x_3&3x_3&x_3\\0\end{array}\right] \\\\ x_3 = \left[\begin{array}{c}4&3&1\\0\end{array}\right]](https://tex.z-dn.net/?f=x%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4x_3%263x_3%26x_3%5C%5C0%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%20x_3%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%263%261%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
By applying the above matrix, we can easily reach an answer