Answer: The hormones secretin and cholecystokinin target the pancreas, stomach, and gallbladder.
Explanation:
The duodenum secretes two additional hormones. Cholecystokinin (CCK), like enterogastrone, is secreted in response to the presence of fat in the chyme. CCK stimulates the contractions of the gallbladder, injecting bile into the duodenum so that fat can be emulsified and more efficiently digested. The other duodenal hormone is secretin. Released in response to the acidity of the chyme that arrives in the duodenum, secretin stimulates the pancreas to release bicarbonate, which then neutralizes some of the acidity.
C. is deactivated in a strongly acidic solution
Kesav will Planting nitrogen-fixing crops, such as peas, in rotation with wheat crops can dramatically reduce the variability of farmers' income with a high-yield, high-protein harvest. ... Instead, they depend on the presence of nitrogen as ammonium or nitrate ions in the soil.
Lost phosphorus is actually recycled through the processes of mineralization, reabsorption, dissolving, and precipitation.
Answer:
Explanation:
<em>The probability of producing plants with white axial flowers would be 1/16.</em>
From the illustration, All F1 individuals had red, axial flowers. It thus means that red and axial genes are dominant over white and terminal genes in the pea plant.
Let us assume that the allele for flower color is A (red) and a (white); and the allele for flower location is B (axial) and b (terminal).
Pure-breeding red, axial flower = AABB
Pure breeding white, terminal flower = aabb
AABB x aabb
F1 genotype = AaBb - all red and axial
At F2:
AaBb x AaBb
Progeny
<em>9 A_B_ red/axial</em>
<em>3 A_bb red/terminal</em>
<em>3 aaB_ white/axial</em>
<em>1 aabb - white/terminal</em>
Hence, the probability of producing plants with white axial flowers in the F2 generation is 1/16.